Skip to main content

The Importance of Atomic and Molecular Correlation on the Bonding in Transition Metal Compounds

  • Chapter
Quantum Chemistry: The Challenge of Transition Metals and Coordination Chemistry

Part of the book series: NATO ASI Series ((ASIC,volume 176))

Abstract

An accurate determination of the separation between the low-lying atomic states (3dn 4s1. 3dn− 1 4s1. and 3dn− 2) of the trantion metal alomst required both extensive basis sets and a high level correlation treatment. Since molecular systems containing transition metal atoms often involve admixtures of atomic states. molecular calculation also must be designed to correctly incorporate the dominani atomic correlation effects. Jn addition, the large atomic exchange energy associated molecular calculatil also must be designed to correctly incorporate the dominan atomic correlation effects. In aodition. the larg atomic exchange energy associated with high spin coupled 3d orbitals requires that a balance between atomic exchange and molecular bonding effects be achieved. These two requirements often necessitate the use of an MCSCF reference wavefunction followed by extensive Cl calculations to provide an accurate description of molecules containing transition metal atoms. Several examples will be given including the dipole moment of the 2Λ state of NiH, which is a sensitive measure of the mixture of 3d04s2 and 3d94s1 in the NiH wavefunction. the dissociation energy of the X2Π state of CuO, which is sensitive to the correct mixture of the 3d94s1 and 3d10 Cu+ atomic states, and the bonding in CrO, where an equivalent description of the relative energies associated with the Cr 3d-3d atomic exchange and the Cr-O bond is important. Some examples of these effects in transition metal dimers will also be given. and molecular bonding effects he achieved. These two requirements often necessitate the use of an MCSCF reference wavefunction followed by extensive cakulalions to provide an accurate description of molecules containing transition metal atoms. Several examples will be given including the dipole moment of the 2▵. state of NiH, which is a sensitive measure of the mixture of :3d94s2 alld 3d94s1 in the NiH wavefunction. the dissociation energy of the X2Π state of CuO, which is sensitive to the correct mixture of the 3d94s1 and 3d10 Cu+ atomic states, and the bonding in CrO. where all equivalent description of the relative energies associated with the Cr 3d-3d atomic exchange and the Cr-O bond is important. Some examples of these effects in transition metal dimers will also be given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. W. Bauschlicher and I. Shavitt, J. Amer. Chem. Soc., 100, 739 (1978).

    Article  CAS  Google Scholar 

  2. I. Shavitt, Tetrahedron, 41, 1531 (1985) and references therein.

    Article  CAS  Google Scholar 

  3. C. E. Moore. Atomic Energy Levels, Natl. Bur. Stand. (US) circ. 467 (1949).

    Google Scholar 

  4. C. W. Bauschlicher and S. P. Walch, J. Chem. Phys., 74, 5922 (1981); C. W. Bauschlicher, S. P. Walch, and H. Partridge, J. Chem. Phys., 76, 1033 (1982).

    Article  CAS  Google Scholar 

  5. “The importance of diffuse f functions for transition metals”, S. R. Langhoff and C. W. Bauschlicher, submitted to J. Chem. Phys.

    Google Scholar 

  6. R. L. Martin, and P. J. Hay, J. Chem. Phys., 75, 4539 (1981).

    Article  CAS  Google Scholar 

  7. S. P. Walch, C. W. Bauschlicher, and S. R. Langhoff, J. Chem. Phys., in press.

    Google Scholar 

  8. J. A. Gray, S. F. Rice, and R. W. Field, J. Chem. Phys., 82, 4717 (1985).

    Article  CAS  Google Scholar 

  9. “Theoretical studies of transition metal dimers”, S. P. Walch and C. W. Bauschlicher, “Comparison of Ab Initio Quantum Chemistry with Experiment”, ed. by R. Bartlett, D. Reidel Publishing Company, Boston (1985).

    Google Scholar 

  10. C. W. Bauschlicher and S. P. Walch, J. Chem. Phys., 76, 4560 (1982).

    Article  CAS  Google Scholar 

  11. S. P. Walch and C. W. Bauschlicher, Chem. Phys. Lett., 86, 66 (1982).

    Article  CAS  Google Scholar 

  12. S. P. Walch and C. W. Bauschlicher, J. Chem. Phys., 78, 4597 (1983).

    Article  CAS  Google Scholar 

  13. S. P. Walch, C. W. Bauschlicher. B. O. Roos, and C. J. Nelin, Chem. Phys. Lett., 103, 175 (1983).

    Article  CAS  Google Scholar 

  14. M. M. Goodgame and W. A. Goddard, Phys. Chem., 85. 215 (1981).

    Article  CAS  Google Scholar 

  15. M. M. Goodgame and W. A. Goddard. Phys. Rev. Lett., 54, 661 (1985). 16. P. S. Bagus, K. Herman, and C. W. Bauschlicher, J. Chem. Phys., 81, 1966 (1984). 17. “The Nature of the Bonding in XCO, for X = Fe, Ni and Cu” C. W. Bauschlicher, P. S. Bagus, C. J. Nelin, and B. O. Roos, submitted to J. Chem. Phys.

    Article  CAS  Google Scholar 

  16. C. W. Bauschlicher, J. Chem. Phys., 73, 2510 (1980).

    Article  CAS  Google Scholar 

  17. J. Almlöf, MOLECULE, a gaussian integral program.

    Google Scholar 

  18. P. E. M. Siegbahn, C. W. Bauschlicher, B. Roos, A. Heiberg, P. R. Taylor, and J. Almlöf, SWEDEN, a vectorized MCSCF-direct CI.

    Google Scholar 

  19. R. C. Raffenetti, BIGGMOLI, Program No. 328, Quantum Chemistry Program Exchange, Indiana University, Bloomington (1977), with modifications to allow use of the full I)2h symmetry.

    Google Scholar 

  20. R. Ahlrichs, H.-J. Bohm, C. Ehrhardt, P. Scharf, H. Schiffer, H. Lischka, and M. Schindler, J. Comp. Chem., 6, 200 (1985).

    Article  CAS  Google Scholar 

  21. R. M. Pitzer, J. Chem. Phys., 58, 3111 (1973).

    Article  Google Scholar 

  22. H. Lischka, R. Shepard, F. B. Brown, and I. Shavitt, Intern. J. Quantum Chem. Symp. 15, 91 (1981).

    CAS  Google Scholar 

  23. R. Shepard, I. Shavitt, and J. Simons, J. Chem. Phys., 76, 543 (1982).

    Article  CAS  Google Scholar 

  24. A. J. H. Wachters, J. Chem. Phys., 52, 1033 (1970).

    Article  CAS  Google Scholar 

  25. P. J. Hay, J. Chem. Phys., 66, 4377 (1977).

    Article  CAS  Google Scholar 

  26. P. S. Bagus and B. O. Roos, J. Chem. Phys. 75, 5961 (1981).

    Article  CAS  Google Scholar 

  27. S. Huzinaga, J. Chem. Phys., 66, 4245 (1977).

    Article  CAS  Google Scholar 

  28. S. P. Walch, C. W. Bauschlicher, and C. J. Nelin, J. Chem. Phys., 79, 3600 (1983).

    Article  CAS  Google Scholar 

  29. P. J. Hay and W. R. Wadt, J. Chem. Phys., 82, 299 (1985).

    Article  CAS  Google Scholar 

  30. R. L. Martin, J. Chem. Phys., 78, 5840 (1983); R. D. Cowan, and D. C. Griffin. J. Opt. Soc. Am., 66, 1010 (1976).

    Article  CAS  Google Scholar 

  31. B. H. Botch, T. H. Dunning, and J. F. Harrison. J. Chem. Phys., 75, 3466 (1981); T. H. Dunning, B. H. Botch, and J. F. Harrison. J. Chem. Phys., 75, 3466 (1981).

    Article  CAS  Google Scholar 

  32. A. D. McLean and B. Liu, Chem. Phys. Lett., 101, 144 (1983).

    Article  CAS  Google Scholar 

  33. S. R. Langhoff and E. R. Davidson, Intern. J. Quantum Chem., 8, 61 (1974).

    Article  CAS  Google Scholar 

  34. R. F. Stewart, J. Chem. Phys., 52, 431 (1970).

    Article  CAS  Google Scholar 

  35. R. Ahlrichs, P. Scharf and C. Ehrhardt, J. Chem. Phys., 82, 890 (1985).

    Article  CAS  Google Scholar 

  36. C. M. Rohlfing and R. L. Martin, Chem. Phys. Lett., 115. 104 (1985).

    Article  CAS  Google Scholar 

  37. P. R. Scott and W. G. Richards, J. Chem. Phys., 63, 1690 (1975), and references therein. 40. G. Das, J. Chem. Phys., 74, 5766 (1981).

    Article  CAS  Google Scholar 

  38. R. L. Jaffe, private communication.

    Google Scholar 

  39. M. R. A. Blomberg, P. E. M. Siegbahn and B. O. Roos, Mol. Phys., 47, 127 (1982).

    Article  CAS  Google Scholar 

  40. P. S. Bagus and C. Björkman, Phys. Rev. A, 23, 461 (1981).

    Article  CAS  Google Scholar 

  41. S. P. Walch, Chem. Phys. Lett., 105, 54 (1984).

    Article  CAS  Google Scholar 

  42. C. W. Bauschlicher, S. R. Langhoff, and S. P. Walch, unpublished work on CPF treatment of NiH.

    Google Scholar 

  43. P. E. M. Siegbahn, A. Heiberg, B. O. Roos, and B. Levy, Physica Scripta, 21, 323 (1980); B. O. Roos. P. R. Taylor, and P. E. M. Siegbahn, Chem. Phys., 48, 157 (1980); P. E. M. Siegbahn, J. Almlöf, A. Heiberg, and B. O. Roos, J. Chem. Phys., 74, 2381 (1981); B. O. Roos, Intern. J. Quantum Chem. S14, 175 (1980).

    Article  CAS  Google Scholar 

  44. C. W. Bauschlicher, P. S. Bagus and C. J. Nelin., Chem. Phys. Lett., 101, 229 (1983).

    Article  CAS  Google Scholar 

  45. P. S. Bagus, C. J. Nelin, and C. W. Bauschlicher, J. Chem. Phys., 79. 2975 (1983).

    Article  CAS  Google Scholar 

  46. “Theoretical Study of the X2Κ and A2+ States of CuO and CuS”, S. R. Langhoff and C. W. Bauschlicher, submitted to Chem. Phys. Lett.

    Google Scholar 

  47. C. W. Bauschlicher. C. J. Nelin and P. S. Bagus, J. Chem. Phys., 82, 3265 (1985).

    Article  CAS  Google Scholar 

  48. “Theoretical Study of the Low-lying Electronic States of ZnO and ZnS”, C. W. Bauschlicher, and S. R. Langhoff, submitted to Chem. Phys. Lett.

    Google Scholar 

  49. Unpublished work on ScO, ScS, VO and VS.

    Google Scholar 

  50. M. Krauss and W. J. Stevens, J. Chem. Phys., 82, 5584 (1985).

    Article  CAS  Google Scholar 

  51. K. P. Huber and G. Herzberg, “Molecular Spectra and Molecular Structure, ” (Van Nostrand Reinhold, New York, 1979).

    Google Scholar 

  52. J. N. Allison and W. A. Goddard, J. Chem. Phys., 77, 4259 (1982).

    Article  CAS  Google Scholar 

  53. S. Smoes, F. Mandy, A. Vander Auwera-Mahieu and J. Drowart., Bull. Soc. Chim. Belges, 81 45 (1972).

    Article  CAS  Google Scholar 

  54. G. Igel, W. Wedig, M. Dolg, P. Fuentealba, H. Preuss, H. Stoll, and R. Frey, J. Chem. Phys., 81, 2737 (1985).

    Article  Google Scholar 

  55. “Ab initio study of the Alkali and Alkaline-earths mono-hydroxides”, C. W. Bauschlicher, S. R. Langhoff, and H. Partridge, submitted to J. Chem. Phys.

    Google Scholar 

  56. Y. Lefebvre, B. Pinchemel, J. M. Delavai and J. Schamps, Physica Scripta, 25, 329 (1982).

    Article  CAS  Google Scholar 

  57. S. P. Walch and C. W. Bauschlicher, Chem. Phys. Lett., 94, 290 (1983).

    Article  CAS  Google Scholar 

  58. S. P. Walch and C. W. Bauschlicher, J. Chem. Phys., 79, 3590 (1983).

    Article  CAS  Google Scholar 

  59. F. A. Cotton and I. Shim, J. Phys. Chem., 89, 952 (1985).

    Article  CAS  Google Scholar 

  60. B. Delley, A. J. Freeman, and D. E. Ellis, Phys. Rev. Lett., 50 488 (1983).

    Article  CAS  Google Scholar 

  61. C. Wood, M. Doran, I. H. Hillier, M. F. Guest, Faraday Symp. Chem. Soc., 14, 159 (1980), and M. F. Guest, private communication.

    Google Scholar 

  62. L. B. Knight, R. J. VanZee and W. Weltner. Chem. Phys. Lett., 94, 296 (9183).

    Article  Google Scholar 

  63. W. Weltner, and R. J. VanZee, Ann. Rev. Phys. Chem., 35, 291 (1984), and references therein.

    Article  CAS  Google Scholar 

  64. D. P. DiLella, W. Limm. R. H. Lipson, M. Moskovits, and K. V. Taylor, J. Chem. Phys., 77, 5263 (1982).

    Article  CAS  Google Scholar 

  65. P. E. M. Siegbahn, Intern. J. Quantum Chem., 23, 1869 (1983).

    Article  CAS  Google Scholar 

  66. P. R. R. Langridge-Smith, M. D. Morse, G. P. Hansen, R. E. Smalley, and A. J. Merer, J. Chem. Phys., 80, 593 (1984).

    Article  CAS  Google Scholar 

  67. M. Moskovits, W. Limm and T. Mejean, J. Chem. Phys., 82, 4875 (1985).

    Article  CAS  Google Scholar 

  68. C. W. Bauschlicher, S. P. Walch, and P. E. M. Siegbahn, J. Chem. Phys., 76, 6015 (1982).

    Article  CAS  Google Scholar 

  69. C. W. Bauschlicher, S. P. Walch, and P. E. M. Siegbahn, J. Chem. Phys., 78, 3347 (1983).

    Article  CAS  Google Scholar 

  70. P. Scharf, S. Brode, and R. Ahlrichs, Chem. Phys. Lett., 113, 447 (1985).

    Article  CAS  Google Scholar 

  71. H.-J. Werner and R. L. Martin, Chem. Phys. Lett., 113, 451 (1985).

    Article  CAS  Google Scholar 

  72. B. C. Laskowski, S. R. Langhoff, C. W. Bauschlicher, and S. P. Walch, to be published.

    Google Scholar 

  73. K. K. Sunil, K. D. Jordan, and K. Raghavachari, J. Phys. Chem., 89, 457 (1985).

    Article  CAS  Google Scholar 

  74. N. Aslund, R. F. Barrow. W. G. Richards, and D. N. Travis. Ark. Fys., 30, 171 (1965); M. Ackerman, F. E. Stafford and J. Drowart, J. Chem. Phys., 33, 1784 (1960); also see Ref. 54.

    CAS  Google Scholar 

  75. C. W. Bauschlicher, S. P. Walch and H. Partridge. Chem. Phys. Lett., 103, 291 (1983).

    Article  Google Scholar 

  76. L. Pauling, J. Chem. Phys., 78, 3346 (1983).

    Article  CAS  Google Scholar 

  77. M. M. Goodgame and W. A. Goddard, Phys. Rev. Lett., 48, 135 (1982).

    Article  CAS  Google Scholar 

  78. M. Moskovits, private communication.

    Google Scholar 

  79. F. A. Cotton and G. Wilkinson, “Advanced Inorganic Chemistry”, (Inter-science, NY, (1966).

    Google Scholar 

  80. C. W. Bauschlicher, and P. S. Bagus, J. Chem. Phys., 81, 5889 (1984).

    Article  Google Scholar 

  81. H. P. Luthi P. E. M. Siegbahn and J. Almlöf, J. Phys. Chem., 89, 2156 (1985).

    Article  Google Scholar 

  82. J. Almlöf, K. Faegri and K. Korseil, J. Comp. Chem., 3, 385 (1982).

    Article  Google Scholar 

  83. C. W. Bauschlicher, “On the bonding in Fe2(CO)9”, submitted to J. Chem. Phys.

    Google Scholar 

  84. C. W. Bauschlicher, unpublished.

    Google Scholar 

  85. C. W. Bauschlicher, Chem. Phys. Lett., 115, 387 (1985).

    Article  CAS  Google Scholar 

  86. M. R. A. Blomberg, U. B. Brandemark, P. E. M. Siegbahn, K. Broch-Mathisen and G. Karlstrom, J. Phys. Chem., 89, 2171 (1985).

    Article  CAS  Google Scholar 

  87. J. Ladell, B. Post and I. Iankuchen, Acta Crystallogr., 5, 795 (1952).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 D. Reidel Publishing Company

About this chapter

Cite this chapter

Bauschlicher, C.W., Walch, S.P., Langhoff, S.R. (1986). The Importance of Atomic and Molecular Correlation on the Bonding in Transition Metal Compounds. In: Veillard, A. (eds) Quantum Chemistry: The Challenge of Transition Metals and Coordination Chemistry. NATO ASI Series, vol 176. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4656-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4656-9_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-277-2237-9

  • Online ISBN: 978-94-009-4656-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics