Desertification through Acidification: The Case of Waldsterben

Conference paper


It is safe to say that theories which relate Waldsterben (forest dieback) to any one single cause fail to explain this complex phenomenon. There is a host of contributing factors including, beside SO2, NOx and acid rain, ozone, fluorine, heavy metals, viruses and pests, forest management and climatic factors. There is a consensus among scientists that pollutants weaken the trees’ resistance so that they can become more easy prey to other adverse influences. Beside the trees, buildings, animals and humans are affected, too, and man’s very livelihood is severely threatened when soil and water become too acidic. Acidification leads to podzolization which, in the temperate zone, results in a steppe-like landscape with widespread abandonment, a process that can be appropriately dubbed as desertification. Responsible for all this is the inefficient combustion of fossil fuels and, in particular, the tall stack policy which, instead of scrubbing the pollutants from the gas stream at the source, allows them to spread over wide areas thereby turning acidification into a worldwide problem. The present type of Waldsterben, which has not been observed before, proceeds at an unprecedented speed. To reverse the adverse trend also requires unprecedented efforts. This paper, therefore, after giving an overview of the extent, symptoms and mechanisms of the damages, emphasizes the active control strategies, such as more efficient and hence less fuel use, abatement techniques at the source, and substitution of pollution-free fuels. This is supplemented by relief strategies, such as liming, spraying, soil treatment etc. The ongoing research in this area at our institute is briefly discussed.


Forest Ecosystem Acid Rain Relief Strategy Coal Cleaning Central European Forest 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anon. (1984). Waldsterben. Auch Atomkraft schuldig? Natur 3, 10–11.Google Scholar
  2. 2.
    Anon. (1984). Surviving acid rain. The Economist, April 14, 92.Google Scholar
  3. 3.
    Athari, S. and Kramer, H. (1983). The problem of determining growth losses in Norway spruce stands caused by environmental factors. In: B. Ulrich and J. Pankrath (eds.) Effects of Accumulation of Air Pollutants in Forest Ecosystems, 319–325, Reidel Publ. Co., Dordrecht.CrossRefGoogle Scholar
  4. 4.
    Bach, W. (1982/84). Gefahr für unser Klima, C.F. Müller, Karlsruhe (English version: Our Threatened Climate, Reidel Publ. Co., Dordrecht).Google Scholar
  5. 5.
    Bilonick, R.A. and Nichols, D.G. (1983). Temporal variations in acid precipitation over New York State — what the 1965–1979 USGS data reveal, Atm. Env. 17(6), 1063–1072.Google Scholar
  6. 6.
    Block, J. (1983). Pers. communication.Google Scholar
  7. 7.
    Bossel, H., Hoecker, K.-H. (1982). Kernkraft pro und kontra, Natur 2, 59–63, and Natur 3, 40-43.Google Scholar
  8. 8.
    Bundesministerium Des Inneren (1981). 2. Immissionsschutzbericht der Bundesregierung.Google Scholar
  9. 9.
    Cowling, E.B. (1982). Acid precipitation in historical perspective, Env. Sci. & Technol. 16(2), 110A–123A.CrossRefGoogle Scholar
  10. 10.
    Deumling, D. und Hatzfeldt, H. (1983). Kalkung, Düngung, resistente Baumzüchtungen, waldbauliche Maßnahmen — können sie den Wald retten? In: Katalyse Umweltgruppe (Hrsg.), 190–193, Volksblatt-Verlag, Köln.Google Scholar
  11. 11.
    Elstner, E.F. (1983). Baumkrankheiten und Baumsterben, Naturwiss. Rundschau 36(9), 381–388.Google Scholar
  12. 12.
    Elstner, E.F. und Osswald, W. (1984). Fichtensterben in “Reinluftgebieten”: Strukturresistenzverlust, Naturwiss. Rundsch. 37(2), 52–61.Google Scholar
  13. 13.
    Elstner, E.F., Osswald, W. and Youngman, R.J. (1984). Basic mechanisms of pigment bleaching and loss of structural resistance in spruce (Picea Abies) needles: Advances in phytomedical diagnostics, Experientia (in press).Google Scholar
  14. 14.
    Fowler, D. et al. (1982). Rainfall acidity in northern Britain, Nature 297, 383–386.CrossRefGoogle Scholar
  15. 15.
    Fritsche, U. (1982). Sanfter Weg statt Saurem Regen — zum Zusammenhang von Energieversorgung und Schwefeldioxid-Emissionen. Öko-Magazin, Bd. 7, 57–93, Verlag Bonz, Fellbach.Google Scholar
  16. 16.
    Galloway, J.N. and Whelpdale, D.M. (1980). An atmospheric sulfur budget for Eastern North America, Atm. Env. 14, 409–417.CrossRefGoogle Scholar
  17. 17.
    Galloway, J.N., Likens, G.E., Keene, W.C. and Miller, J.M. (1982). The composition of precipitation in remote areas of the world, JGR 87(11), 8771–8786.CrossRefGoogle Scholar
  18. 18.
    Gehrmann, J. And Ulrich, B. (1983). Der Einfluß des Sauren Niederschlags auf die Naturverjüngung der Buche. In: Immissionsbelastungen von Waldökosystemen, 32–36, Sonderheft, Landesanstalt für Ökologie, Landschaftsentwicklung und Forstplanung Nordrhein-Westfalen.Google Scholar
  19. 19.
    Georgii, H.W., Perseke, C. and Rohbock, E. (1984). Deposition of acid components and heavy metals in the Federal Republic of Germany for the period 1979–1981, Atm. Env. 18(3), 581–589..CrossRefGoogle Scholar
  20. 20.
    Haines, B., Jordan, C., Clark, H. and Clark, K. (1983). Acid rain in an Amazon rainforest, Tellus 35B, 77–80.CrossRefGoogle Scholar
  21. 21.
    Harriss, R.C. et al. (1984). Atmospheric transport of pollutants from North America to the North Atlantic Ocean, Nature 308, 722–724.CrossRefGoogle Scholar
  22. 22.
    Harte, J. (1983). An investigation of acid precipitation in Qinghai Province, China, Atm. Env. 17(2), 403–408.CrossRefGoogle Scholar
  23. 23.
    Herold, D. (1983). Eine Tarnkappe für Pflanzen, Natur 11, 20–23.Google Scholar
  24. 24.
    Hüttermann, A. (1983). Frühdiagnose von Immissionsschäden im Wurzelbereich von Waldbäumen. In: Immissionsbelastungen von Waldökosystemen, 26–31, Sonderheft, Landesanstalt für ökologie, Landschaftsentwicklung und Forstplanung Nordrhein-Westfalen.Google Scholar
  25. 25.
    Jickells, T., Knap, A., Church, T., Galloway, J. and Miller, J. (1982). Acid rain on Bermuda, Nature 297, 55–57.CrossRefGoogle Scholar
  26. 26.
    Kallend, A.S., March, A.R.W., Pickles, J.H. and Proctor, M.V. (1983). Acidity of rain in Europe, Atm. Env. 17(1), 127–137.CrossRefGoogle Scholar
  27. 27.
    Katalyse Umweltgruppe (Hrsg.) (1983). Das Waldsterben. Ursachen, Folgen, Gegenmaßnahmen. VolksBlatt-Verlag, Köln.Google Scholar
  28. 28.
    Kuttler, W. (1982). Belastung für den Boden, Umweltmagazin 10, 56–61.Google Scholar
  29. 29.
    Levitt, J. (1980). Responses of plants to environmental stresses, II. Water, radiation, salt and other stresses. Academic Press, New York.Google Scholar
  30. 30.
    Likens, G.E. and Butler, T.J. (1981). Recent acidification of precipitation in North America, Atm. Env. 15(7), 1103–1109.CrossRefGoogle Scholar
  31. 31.
    Lovins, A.B., Lovins, L.H., Krause, F. and Bach, W. (1981/83). Leastcost energy: Solving the CO2 problem, Brick House, Andover (German version: Wirtschaftlichster Energieeinsatz: Lösung des CO2 Problems, Alternative Konzepte 42, C.F. Müller, Karlsruhe).Google Scholar
  32. 32.
    Persson, G.A. (1976). Control of sulfur dioxide emissions in Europe, Ambio 5 (5–6), 249–252.Google Scholar
  33. 33.
    Schwedisches Landwirtschaftsministerium (1983). Die Versauerung, Staatl. Amt für Umweltschutz, Solna.Google Scholar
  34. 34.
    Schwela, D. (1983). Vergleich der nassen Deposition von Luftverunreinigungen in den Jahren um 1870 mit heutigen Belastungswerten, Staub 43, 135–139.Google Scholar
  35. 35.
    Swedish Ministry of Agriculture (1982). The 1982 Stockholm Conference on Acidification of the Environment, June 21–30, 1982, Stockholm.Google Scholar
  36. 36.
    Ulrich, B., Mayer, R. and Khanna, P.K. (1979). Deposition von Luftverunreinigungen und ihre Auswirkungen in Waldökosystemen im Soiling, Schriften Forstl. Fak. Univ. Göttingen 58, 291.Google Scholar
  37. 37.
    Ulrich, B. (1983a). A concept of forest ecosystem stability and of acid deposition as driving force for destabilization. In: B. Ulrich and J. Pankrath (eds.) Effects of Accumulation of Air Pollutants in Forest Ecosystems, 1–29, Reidel Publ. Co., Dordrecht.CrossRefGoogle Scholar
  38. 38.
    Ulrich, B. (1983b). Gefahren für das Ökosystem durch Saure Niederschläge. In: Immissionsbelastungen von Waldökosystemen, 9-25, Sonderheft, Landesanstalt für Ökologie, Landschaftsentwicklung und Forstplanung Nordrhein-Westfalen.Google Scholar
  39. 39.
    Ulrich, B. (1984). Effects of air pollution on forest ecosystems and waters — the principles demonstrated at a case study in Central Europe, Atm. Env. 18(3), 621–628.CrossRefGoogle Scholar
  40. 40.
    Wentzel, K.F. (1982). Das Ausmaß der Waldschäden — ihre ökologische und landeskulturelle Bedeutung in Zentral-Europa. In: Waldschäden durch Immissionen, 7–25, Informationstagung Gottlieb Duttweiler Institut, Zürich.Google Scholar
  41. 41.
    Wisniewski, J. and Kinsman, J.D. (1982). An overview of acid rain monitoring acitvities in North America, Bull. Amer. Met. Soc. 63(6), 598–618.CrossRefGoogle Scholar
  42. 42.
    Yan, T.Y. (1984). Fueling power plants with high sulfur coal in compliance with emission standards, Energy 9(3), 265–274.CrossRefGoogle Scholar
  43. 43.
    Zell, R.A. (1983). Düstere Aussichten — Und ewig stöhnen die Wälder, Bild der Wissenschaft 12, 96–102.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1986

Authors and Affiliations

  • W. Bach
    • 1
  1. 1.Center for Applied Climatology and Environmental Studies, Department of GeographyUniversity of MünsterMünsterWest-Germany

Personalised recommendations