Skip to main content

Measurement and Theoretical Calculation of the 252Cf Spontaneous-Fission Neutron Spectrum

  • Chapter
Neutron Induced Reactions
  • 128 Accesses

Abstract

Concerning the 252Cf(sf) neutron spectrum remarkable progress in experiment and theory have been made during the last three years. Experimental techniques and analysis procedures have been improved. The precise measurement of the standard neutron spectrum from spontaneous fission of 252Cf requires the optimum experimental arrangement corresponding to the energy range to be measured. Several types of data corrections have to be considered with care. The most important requirements to be met in a 252Cf(sf) neutron spectrum measurement are summarized briefly. We consider the high-energy range especially.

Theoretical models for the calculation of fission neutron spectra are based on the predominant emission mechanism, i.e. the evaporation from fully accelerated fragments. It is emphasized that an exact evaporation theory of fission neutron spectra should take into account the fragment distribution in nucleonic numbers, excitation energy, kinetic energy, and nuclear spin as well as the cascade neutron emission from highly excited, neutron-enriched fragments in competition to gamma-ray emission. However, practical applications require several approximations. Some approaches which were studied in the framework of both the Weisskopf formalism and the Hauser-Feshbach theory are discussed. We point out some of the deviations in spectrum calculation if neglecting or approximating typical characteristics of fission neutron emission.

The results of new Cf spectrum calculations are compared with recent experimental data which confirm a Maxwellian spectrum at energies below ∼ 1 MeV for T = 1.42 MeV. Between 1.5 and 4 MeV, measured data tend to exceed this Maxwellian by about 3%. Significant deviations from a Maxwellian with T = 1.42 MeV appear between 6 and 20 MeV where a fit of experimental data yields a value of T close to 1.37 MeV.

Recent theoretical calculations of the Cf neutron spectrum agree very good with measured data. Especially, the complex cascade evaporation model permits a conformable description of recent experimental data in the whole energy range (1 keV–20 MeV) if introducing the CMS anisotropy of emission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Prompt Fission Neutron Spectra, Proc. Consultants’ Meeting, Vienna 1971, IAEA, Vienna, 1972.

    Google Scholar 

  2. Nuclear Data Standards for Nuclear Measurements, Technical Reports Series No. 227, IAEA, Vienga 1983.

    Google Scholar 

  3. IAEA Consultants’ Meeting on the 235U Fast-neutron Fission Cross-section and the 252Cf Fission Neutron Spectrum, Proc. INDC(NDS)-146/L, 1983.

    Google Scholar 

  4. M. V. Blinov, Proc. IAEA Consultants’ Meeting on Neutron Source Properties, Debrecen, 1980, INCD(NDS)-114/GT, 1980.

    Google Scholar 

  5. J. Terrell, Proc. IAEA Symp. on Physics and Chemistry of Fission, Salzburg, 1965, IAEA, Vienna, Vol. 2, p. 3.

    Google Scholar 

  6. H. Märten et al., see réf. /3/, p. 199.

    Google Scholar 

  7. M. V. Blinov et al., Proc. Int. Conf. on Nuclear Data for Science and Technology. Antwerp, 1983, ed. by K. H. Böckhoff, D. Reidel, Dordrecht, 1983, p. 479.

    Google Scholar 

  8. A. Lajtai et al., see ref. /3/, p. 177.

    Google Scholar 

  9. W. P. Poenitz and T. Tamura, see ref. /7/, p. 465 and ref. /3/, p. 175.

    Google Scholar 

  10. M. V. Blinov et al., preprint, 1984.

    Google Scholar 

  11. R. Böttger et al., see ref. /7/, p. 434.

    Google Scholar 

  12. H. Märten et al., see ref. /7/, p. 488.

    Google Scholar 

  13. H. Märten et al., this volume.

    Google Scholar 

  14. J. Boldeman, Trans. Am. Nucl. Soc. 32 (1979) 733 and information about new measurements received via NDS, H. D. Lemrpel, Note 84/5/11.

    Google Scholar 

  15. Mon Jiangshen et al., Chin. Nucl. Phys. 3 (1981) 163.

    Google Scholar 

  16. J. Gründl and C. Eisenhauer, Nat. Bur. Stand., Spec. Publ. NBS-493, 1977.

    Google Scholar 

  17. A. Chalupka et al., see réf. /3/, p. 187.

    Google Scholar 

  18. H. Klein et al., see réf. /3/, p. 191.

    Google Scholar 

  19. J. S. Fraser, Phys. Rev. 88 (1952) 536.

    Article  ADS  Google Scholar 

  20. B. E. Watt, Phys. Rev. 87 (1952) 1037.

    Article  ADS  Google Scholar 

  21. J. Terrell, Phys. Rev. 113 (1959) 527.

    Article  MathSciNet  ADS  Google Scholar 

  22. H. R. Bowman et al., Phys. Rev. 126 (1962) 2120.

    Article  ADS  Google Scholar 

  23. V. S. Stavinski, Sov. Phys.-JETP 36 (1959) 629.

    Google Scholar 

  24. R. W. Fuller, Phys. Rev. 126 (1962) 684.

    Article  MathSciNet  ADS  Google Scholar 

  25. Y. Boneh and Z. Fraenkel, Phys. Rev. C10 (1974) 893.

    ADS  Google Scholar 

  26. V. A. Rubchenya, Leningrad report RI-28, 1974.

    Google Scholar 

  27. B. C. Samanta et al., Phys. Lett. B108 (1982).

    Google Scholar 

  28. E. Cheifetz et al., Phys. Rev. Lett. 29 (1972) 805.

    Article  ADS  Google Scholar 

  29. B. Wilhelmy et al., Phys. Rev. C5 (1972) 2041.

    ADS  Google Scholar 

  30. A. Gavron, Phys. Rev. C13 (1976) 2561.

    ADS  Google Scholar 

  31. V. F. VVeisskopf, Phys. Rev. 52 (1937) 295.

    Article  ADS  MATH  Google Scholar 

  32. J. M. Blatt and V. F. Weisskopf. M. Blatt and V. F. Weisskopf, “Theoretical Nuclear Physics”, J. Wiley a. Sons, New York, 1952.

    MATH  Google Scholar 

  33. W. Hauser and W. Feshbach, Phys. Rev. 87 (1952) 366.

    Article  ADS  MATH  Google Scholar 

  34. H. Märten and D. Seeliger, D. Phys. G10 (1984) 349.

    ADS  Google Scholar 

  35. H. Märten and D. Seelige.r, this volume.

    Google Scholar 

  36. I. C. Browne and F. S. Dietrich, Phys. Rev. C10 (1974) 2445.

    ADS  Google Scholar 

  37. B. F. Gerasimenko et al., Proc. All-Union Conf. Neutron Physics, Kiev, 1980, Moscow, 1980, Vol. 3, p. 137.

    Google Scholar 

  38. B. F. Gerasimenko et al., Proc. All-Union Conf. Neutron Physics, Kiev, 1983, Moscow, 1984, Vol. 1, p. 349.

    Google Scholar 

  39. E. Nardi et al., Phys. Lett. 43B (1973) 259.

    ADS  Google Scholar 

  40. D. G. Madland and D. R. Nix, Nucl. Sci. Eng. 81 (1982) 213.

    Google Scholar 

  41. D. G. Madland and R. Nix, see ref. /7/, p. 473.

    Google Scholar 

  42. D. G. Madland and R. 0. LaBauve, preprint LA-UR-84-129, 1984.

    Google Scholar 

  43. H. Märten and D. Seeliger, INDC(GDR)-30/L.

    Google Scholar 

  44. K. H. Schmidt et al., Z. Phys. A308 (1982) 215.

    ADS  Google Scholar 

  45. A. V. Ignatyuk et al., Yad. Fiz. 21 (1975) 485.

    Google Scholar 

  46. H. Märten et al., see ref. /37/ and INDC(GDR), 1984, in press.

    Google Scholar 

  47. M. V. Blinov et al.,, see ref. /3/, p. 161.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 VEDA, Publishing House of the Slovak Academy of Sciences

About this chapter

Cite this chapter

Märten, H., Seeliger, D. (1986). Measurement and Theoretical Calculation of the 252Cf Spontaneous-Fission Neutron Spectrum. In: Krištiak, J., Běták, E. (eds) Neutron Induced Reactions. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4636-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4636-1_35

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8561-8

  • Online ISBN: 978-94-009-4636-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics