Skip to main content

Applications and Misapplications of the Channel-Capture Formalism of Direct Neutron Capture

  • Chapter
Neutron Induced Reactions
  • 125 Accesses

Abstract

We discuss the channel-capture approximation of slow neutron direct-capture theory. We show that this approximation gives a generally good representation of the neutron capture cross sections for several electric dipole transitions in a broad range of nuclides from A = 9 to A = 136; these are mostly near-spherical nuclei. Despite this body of agreement, we examine the accuracy we can expect from the simple channel-capture theory. Comparison with calculations of the potential-capture cross section from physically more realistic optical model calculations shows that, in general, the channel-capture cross section can be up to ≈40% in error. In cases where the expected channel-capture cross section is much smaller than the “hard-sphere” capture cross-section estimate, the disagreement with potential capture can be much worse than this. Also, in these cases, compound-nucleus capture can be of comparable or greater magnitude. These effects have been shown to completely undermine recent attempts to determine nuclear interaction radii for targets, such as 12C and 9Be, by application of the channel-capture formula to capture cross-section data.

Research sponsored in part by the U.S. Department of Energy under Contract No. DE-AC05-840R21400 with the Martin Marietta energy Systems, Inc.

Eric Lyn is grateful to ORNL for its hospitality during April–May, 1985

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. M. Lane and D. E. Lynn, Nucl. Phys. 17 (1960) 563; 17 (1960) 686.

    Article  Google Scholar 

  2. S. F. Mughabghab, M. Divadeenam and N. E. Holden, “Neutron Cross Sections”, Vol. 1, Part A, Academic Press, New York, 1981, p. 12.

    Google Scholar 

  3. S. F. Mughabghab, M. A. Lone and B. C. Robertson, Phys. Rev, C26 (1982) 2698.

    ADS  Google Scholar 

  4. S. Raman, in “Neutron-capture Gamma-ray Spectroscopy and Related Topics 1981”, ed. by T. von Egidy, F. Gonnenwein and B. Maier, Institute of Physics, Bristol, 1982, p. 357.

    Google Scholar 

  5. R. F. Carlton, S. Raman and E. T. Ourney, in “Neutron- capture Gamma-ray Spectroscopy and Related Topics” 1981, ibid., p. 375.

    Google Scholar 

  6. C. E. Thorn, W. Olness, E. K. Warburton and S. Raman, Phys. Rev. C30 (1984) 1442.

    ADS  Google Scholar 

  7. Data from P. M. Endt and C. Van der Leun, Nucl. Phys. A310 (1978) 1.

    Google Scholar 

  8. S. Mughabghab, in “Proceedings of the Specialists Meeting on Neutron Cross Sections of Fission Product Nuclei”, Bologna, 1979, ed. by C. Coceva and G. C. Panini, Report NEANDC(E)209 “L”, p. 179.

    Google Scholar 

  9. S. F. Mughabghab, in Proceedings of the Conference on Nuclear Data Evaluation Methods and Procedures, BNL, Upton, N.Y., 1981, ed. by B. A. Magurno and S. Pearlstein, Report BNL-NCS-51363, Vol. 1, p. 339.

    Google Scholar 

  10. J. Honzátko, K. Konecny, F. Beóvár, E. A. Eissa and M. Králik, Z. Phys. A299 (1981) 183.

    ADS  Google Scholar 

  11. J. Honzátko, K. Konecny, F. Beáváf and E. A. Eissa, Czech. Phys. B30 (1980) 763.

    Article  ADS  Google Scholar 

  12. S. F. Mughabghab, Phys. Lett. 81B (1979) 93.

    ADS  Google Scholar 

  13. J. Honzátko, K. Konecny, F. Beóváf, Z. Kosina and M. Králik, in Neutron Induced Reactions; i Proc. of the Europhysics Topical Conference, Smolenice, 1982, ed. by P. Oblozinsky, Institute of Physics, Bratislava, 1982, p. 249.

    Google Scholar 

  14. S. F. Mughabghab, Phys. Rev. Lett. 54 (1985) 986.

    Article  ADS  Google Scholar 

  15. Shi Zongren, Zeng Xiantang and Guo Taichang, Chin. J. Nucl. Phys. 4 (1982) 88.

    Google Scholar 

  16. R. L. Macklin and S. F. Mughabghab, Phys. Rev. C, to be published •

    Google Scholar 

  17. S. Raman, R. F. Carlton, C. Wells, E, T. Durney and a. E. Lynn, Phys. Rev. C, to be published.

    Google Scholar 

  18. J. Cugnon and C. Mahaux, Ann. Phys. (N.Y.) 94 (1975) 128.

    Article  ADS  Google Scholar 

  19. A. G. W. Cameron, Can. J. Phys. 37 (1959) 322.

    Article  ADS  Google Scholar 

  20. Y. K. Ho and M. A. Lone, Nucl. Phys. A4Q6 (1983) 18.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 VEDA, Publishing House of the Slovak Academy of Sciences

About this chapter

Cite this chapter

Raman, S., Lynn, J.E. (1986). Applications and Misapplications of the Channel-Capture Formalism of Direct Neutron Capture. In: Krištiak, J., Běták, E. (eds) Neutron Induced Reactions. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4636-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4636-1_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8561-8

  • Online ISBN: 978-94-009-4636-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics