Skip to main content

Pattern Formation in Neural Systems II. Noise-induced selective mechanism for the ontogenetic formation of ocular dominance columns

  • Chapter
Cybernetics and Systems ’86

Abstract

A model for the formation and plastic behaviour of ocular dominance columns is given in terms of modifiable synapses. The activity-dependent self-organi2ing mechanism presented is in accordance with the concept of noise-induced transition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amari, S.: Competitive and cooperative aspects in dynamics of neural excitation and seif-organization. In: Competition and cooperation in neural nets. Lecture Notes in Biomathematics, Vol.45, Amari, S. & Arbib M. S., eds., Berlin-Heidelberg, New York:, Springer 1982, pp. 1–28.

    Google Scholar 

  • Bienenstock, E.: Cooperation and competition in central nervous system development: a unifying approach. In: Synergetics of the brain. Basar, E; Flohr, H.; Haken, H & Mandell, A. J, eds. Springer, 1983

    Google Scholar 

  • Blasdel,G. G. Lund, J. S.: Termination of afferent axons in macaque striate cortex. J. Neurosci. 3 (1339–1413)1933

    Google Scholar 

  • Changeux, J.-P.,Heidmann, T. & Patte, P.: Learning by selection. In: The biology of learning, Marler, P. & Terrace, H. S., eds. Dahlem Konferenzen 1984. Berlin- Heidelberg-New York-Tokyo: Springer, pp. 115–133.

    Google Scholar 

  • Cotman, C. W Nieto-Sampedro, M.: Brain function, synapse renewal, and plasticity. Ann. Rev. Psychol. 33 (371–401)1932

    Article  Google Scholar 

  • Edelman, B. M. & Finkel, L. M.: Neuronal group selection in the cerebral cortex, In: Dynamic aspects of the neocortical function, (Edelman, G. M., Cowan, W. M. Gail, U. E. eds.) New York-Wiley 1984.

    Google Scholar 

  • Eigen, M.:Self-organization of matter and the evolution of biological macromolecules. Naturwissenschaften 58 (465–523) 1971.

    Article  Google Scholar 

  • Érdi, P.: System-theoretical approach to the neural organization: feed-forward control of the ontogenetic development.In: Cybernetics and System Research, Vol.2. Trappl, R. ed., Elsevier: North-Hol1and 1984, pp., 229–235.

    Google Scholar 

  • Érdi, P. & Barna, G.: Self-organizing mechanism for the formation of ordered neural mappings, Biol. Cybernetics 51 (93–101)1984

    Article  MATH  Google Scholar 

  • Érdi, P. & Barna, G.: Self-organization of neural networks: noise-induced transition, Phys. Lett 107A (287–290)1985.

    Google Scholar 

  • Érdi, P. Szentagothai, J. Neural connectivities: between deterfninis/n and randomness, in: Dynamics of macrosystems. Springer (in press)

    Google Scholar 

  • Ferster, D. & LeVay, S.: The axonal arborization of lateral geniculate neurons in the striate cortex of the cat. J. Comp. Neurol. 181 (923–944)1978

    Article  Google Scholar 

  • Fraser, S. E.: Cel1 interactions involved in neuronal patterning:an experiinental and theoretical approach. In: Molecular basis of neural development. Edelman, G. M.; Gall, W. E. & Cowan, W. M. eds. Neuroscience Res. Found. 1985, pp. 481–507.

    Google Scholar 

  • Gilbert: Horizontal integration in the neocortex. TINS 8 (160–165) 1985

    Google Scholar 

  • Haken, H. (ed.):Pattern formation by dynamic systems and pattern recognition, Springer,1979.

    Google Scholar 

  • Hebb, C. O.: The organization of behaviour. New York: Wiley, 1949.

    Google Scholar 

  • Hirai,Y.: A new hypothesis for synaptic modification: an interactive process between postsynaptic competition and presynaptic regulation. Biol. Cybernetics 36 (41–50)1980.

    Article  MATH  Google Scholar 

  • Horsthemke, W. & Lefever , R.: Noise-induced transition. Theory and applications in physics, chemistry and biology, Springer: Berlin-Heidelberg-Tokyo,1984.

    Google Scholar 

  • Hubel, D. H. :Exploration of the primary visual cortex, 1955–78. Nature 299 (515–524)1982

    Article  Google Scholar 

  • Hubel, D. H. & Wiesel , T. N. :Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey. J. Comp. Neurol. 146 (421–450)1972.

    Article  Google Scholar 

  • Kohonen, T. :Analysis of a simple self-organizing process. Biol. Cybernetics 44 (135–140)1982.

    Article  MathSciNet  MATH  Google Scholar 

  • May, R. H. :Stabi1ity in random fluctuating versus deterministic environments. Am. Nature 107 (621–650)1972.

    Article  Google Scholar 

  • Meyer, R, L. :Tetrodotoxin blocks the formation of ocular dominance columns in goldfish. Science 218 (589–591)1982

    Google Scholar 

  • Mower, G. D.,Caplan, C. J.,Christen <W. G. & Duffy, F. H.:Dark rearing prolongs physiological but not anatomical plasticity of cat visual cortex. J. Comp. Neurol. 235 (448–466) 1985

    Article  Google Scholar 

  • Nobile, A. G. & Ricciardi, L. M.: Growth with regulation in fluctuating environments. Biol. Cyberneties 49 ( 177–188 ) 1984.

    MathSciNet  Google Scholar 

  • Rakic, P. & Goldman-Rakic, P. S.:Developmet of modifiability of the cerebral cortex. Neurosci. Res. Program Bull. 20., 1982.

    Google Scholar 

  • Rosen, R. :Pattern generation in networks. Progr. Theor. Biol. 5 (161–209)1981

    Google Scholar 

  • Schmidt, J. T. & Edwards, D. L.: Activity sharpens the inap during the regeneration of the retinotectal projection in goldfish. Brain Res. 269 (29–39)1983.

    Article  Google Scholar 

  • Shatz, C. J., Lindstrom, S. & Wiesel, T. N.: The distribution of afferents representing the right and left eyes in the cat’s visual cortex. Brain Res. 131 (103–116) 1977.

    Article  Google Scholar 

  • Stryker M. P.:Late segregation of geniciate afferents’ to the cat’s visual cortex after recovery from binocular impulse blockade. Soc. Neurosci. Abstr. 7 (842) 1981.

    Google Scholar 

  • Stryker ,M.P.:Role of visual afferents activity in the development of ocular dominance columns. In: Rakic,P. Goldman_Rakic,P.S. 1982( see there)

    Google Scholar 

  • Swindale,N.V.:A model for the formation of ocular dominance stripes. Proc. R. Soc. Lond. B208(243–264)1980

    Article  Google Scholar 

  • Szentàgothai,J.:The local neuronal apparatus of the cerebral cortex. In: Buser,P.A.; Rougeul-Buser,A., eds.:Cerebral correlates of conscious experience. North Holland,Amsterdam,New York,Oxford 1978. pp.,131–138.

    Google Scholar 

  • Szentàgothai,J.:The modular architectonic principle of neural centers. Rev.Physiol.Biochem.Pharmacol.98(11–61) 1983.

    Article  Google Scholar 

  • Tieman,S.B.:Effects of monocular deprivation on geniculocortical synapses in the cat.J.Comp.Neurol.222( 166–176)1984.

    Article  Google Scholar 

  • von der Malsburg,Ch.:Development of ocularity domains and growth behaviourof axon terminals. Biol. Cybernetics 45 (49–56) 1979.

    Article  Google Scholar 

  • Wiesel,T.N.:Postnatai development of the visual cortex and the influence of environment.Nature 299(583–591)1982

    Article  Google Scholar 

  • Willshaw,D.J. & v.d. Maisburg,Ch.:How patterned neural connections can be set up by self organization. Proc. R. Soc. Lond. B194(431–445) 1976

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 D. Reidel Publishing Company

About this chapter

Cite this chapter

Barna, G., Érdi, P. (1986). Pattern Formation in Neural Systems II. Noise-induced selective mechanism for the ontogenetic formation of ocular dominance columns. In: Trappl, R. (eds) Cybernetics and Systems ’86. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4634-7_44

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4634-7_44

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8560-1

  • Online ISBN: 978-94-009-4634-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics