Skip to main content

The Distorted Wave Theory of Chemical Reactions

  • Chapter
The Theory of Chemical Reaction Dynamics

Part of the book series: NATO ASI Series ((ASIC,volume 170))

Abstract

A review is given of recent applications of the distorted wave (DW) method to the theory of chemical reactions. A brief account of the following topics is included: the formal DW theory of reactions, static and adiabatic methods for choosing the distortion potentials, and the removal of the 3 Euler angles from the 6 dimensional DW integral. Applications of various DW theories to the HH+H2, H+F2. O(3P)+H2. O(3P) +C(CH3) 4. O(3P)+HC(CH3)3. He+H2 +. F+H2 and CI+HCI chemical reactions and isotopic variations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Amaee, J.N.L. Connor and G.C. Schatz. work in progress (1985).

    Google Scholar 

  2. P. Andresen and A.C. Luntz, The chemical dynamics of the reactions of O(3p) with saturated hydrocarbons. I. Experiment,J. Chem. Phys. 72. 5842–50 (1980).

    CAS  Google Scholar 

  3. N. Austern. Direct Nuclear Reaction Theories (Wiley-lnterscience. New York. 1970).

    Google Scholar 

  4. V. K. Babamov. V. Lopez and R. A. Marcus. Dynamics of hydrogen atom and proton transfer reactions. Simplified analytic two-state formulae, Chem. Phys. Lett., 101. 507–11 (1983).

    Article  CAS  Google Scholar 

  5. V. K. Babamov. V. Lopez and R.A. Marcus. Dynamics of hydrogen atom and proton transfer reactions. Nearly degenerate asymmetric case, J. Chem. Phys., 78. 5621–8 (1983); erratum ibid., 81. 4182 (1984).

    Google Scholar 

  6. V. K. Babamov. V. Lopez and R.A. Marcus. An exponentiated DWBA formula for H-atom transfers. Extensions to lower barrier potentials and to higher energies.J. Chem. Phys., 80. 1812–6 (1984): erratum ibid., 81. 4181 (1984).

    Article  CAS  Google Scholar 

  7. M. Baer. A review of quantum-mechanical approximate treatments of three-body reactive systems.Adv. Chem. Phys. 49. 191–309 (1982).

    Article  CAS  Google Scholar 

  8. M.V. Basilevsky and V. M. Ryaboy. Quantum Dynamics of linear triatomic reactions, Adv. Quant. Chem., 15. 1–83 (1982).

    Article  Google Scholar 

  9. N.C. Blais and D.G. Truhlar. Calculated product-state distributions tor the reaction H+D 2HD+D at relative translational energies 0.55 and 1.30 eV, Chem. Phys. Lett., 102, 120–5 (1983).

    Article  CAS  Google Scholar 

  10. M.S. Bowers. B.H. Choi. R.T. Poe and K. T. Tang, Quantum mechanical determination of product state distributions in the H+D 2HD+D reaction. Chem. Phys. Lett., 116 239–44 (1985).

    Article  CAS  Google Scholar 

  11. D. Brandt and J.C. Polanyi. Energy distributions among reaction products. XI. H+CIF → HF+CI, HCI+F, Chem. Phys., 35. 23–34 (1978).

    Article  CAS  Google Scholar 

  12. A.M. Brodskii. V.G. Levich and V.V. Tolmachev. Wave-mechanical theory for the cross sections of gas-phase substitution reactions II. Overlap integral and general properties and energetic and angular dependences of the cross section,Khim. Vys. Energ., 4, 195–201 (1970); English translation: High Energy Chem., 4. 171-6 (1970).

    CAS  Google Scholar 

  13. A.M. Brodsky and V.G. Levich. Theory of the simplest substitution reactions, J. Chem. Phys., 58. 3065–81 (197

    Article  Google Scholar 

  14. B.H. Choi and K. T. Tang, Adiabatic distorted wave calculation of H+H2 reactive scattering. J. Chem. Phys., 61, 2462–4 (197

    Article  CAS  Google Scholar 

  15. B.H. Choi and K.T. Tang, Theory of distorted-wave Born approximation for reactive scattering of an atom and a diatomic molecule. J. Chem. Phys., 61, 5147–57 (197

    Article  CAS  Google Scholar 

  16. B.H. Choi and K.T. Tang. Three-dimensional quantum mechanical studies of D+H 2HD+H reactive scattering, II, J. Chem. Phys., 63. 2854–60 (1975).

    Article  CAS  Google Scholar 

  17. B.H. Choi and K.T. Tang, Three-dimensional quantum mechanical studies of the H+H 2 reactive scattering. J. Chem. Phys., 65. 5161–80 (1976).

    Article  CAS  Google Scholar 

  18. B.H. Choi. R.T. Poe. J.C. Sun and K.T. Tang. Reactive scattering of rotationally excited target molecules with adiabatic theory.J. Chem. Phys., 73. 4381–9 (1980).

    Article  CAS  Google Scholar 

  19. B.H. Choi. R.T. Poe. J.C. Sun. K.T. Tang and Y. Y. Yung. Transition matrix theory of molecular reactive scattering. J. Chem. Phys., 74. 5686–93 (1981).

    Article  CAS  Google Scholar 

  20. B.H. Choi. R.I. Poe and K.T. Tang, Coupled channel distorted wave method of atom-molecule reactive scattering: Application to para to ortho hydrogen molecule conversion.J. Chem. Phys., 81, 4979–90 (1984).

    Article  CAS  Google Scholar 

  21. D.C. Clary and J. N. L. Connor. Application of the vibrationally adiabatic and static distorted wave Born approximations to the reaction H+F 2(v=0,j=0)→ HF(v,j) +F. Chem. Phys. Lett., 66, 493–7 (197

    Article  CAS  Google Scholar 

  22. D.C. Clary and J.N.L. Conr The O 3 P+H 2 v2jm j → OHv’⪕2i’mj’+H reaction. A vibrationally adiabatic distorted wave study using a LEPS and fitted ab initio potential energy surface. Mol. Phys. 41. 689–702 1980

    Google Scholar 

  23. D.C. Clary and J.N.L. Connor. Distorted-wave calculations for the three dimensional chemical reaction H+H 2 (v⪕2, j-0) → OH(v’⪕2,i’,mj’)+H, Chem. Phys., 48. 175–81 (1980).

    Article  CAS  Google Scholar 

  24. D.C. Clary and J.N.L. Connor. Vibrationally adiabatic distorted wave calculation for the rotationally excited reaction H+H 2 v=0.j)H2(v’=0,j’)+H, J. Chem. Phys., 74. 6991–3 (1981).

    Article  CAS  Google Scholar 

  25. D.C. Clary and J.N.L. Connor. Comparison of the rotationally adiabatic and vibrationally adiabatic distorted wave methods for the H+H 2 (v=0,j=0) → H2(v’=0,j’)+H and D+H 2 (v=0, j=O) → DH(v’-O,j’)+H chemical reactions. Mol. Phys., 43. 621–39 (198)

    Article  CAS  Google Scholar 

  26. D.C. Clary and J.N.L. Connor, The vibrationally adiabatic distorted wave method for direct chemical reactions: Application to X+F 2 (v=0,i=0) → XF(v’,j’,mj’)+F (X=Mu.H, D,T), J. Chem. Phys., 75. 3329–39 (1981).

    Article  Google Scholar 

  27. D.C. Clary. J.N.L. Connor and W.J.E. Southall. Reactions of O(3p) with saturated hydrocarbons: Vibrationally adiabatic distorted wave calculations of product rotational distributions for two triatomic model reactions, J. Chem, Phys., (in the press).

    Google Scholar 

  28. J. N. L. Connor, Theory of molecular collisions and reactive scattering, Ann. Rep. Chem. Soc., 70A, 5–30 (1973).

    Google Scholar 

  29. J.N.L. Connor, Reactive molecular collision calculations. Comput. Phys. Commun. 17, 117–43 (1979).

    Article  CAS  Google Scholar 

  30. J.N.L. Connor and W.J.E, Southall, The reaction H+D 2 → HD+D: Distorted wave calculations at Et rans (v=0, j=0) = 0.55 and 1.3 eV, Chem. Phys. Lett., 108 527–31 (1984).

    Article  CAS  Google Scholar 

  31. J.N.L. Connor and W.J.E. Southall, The reaction H+D 2 → HD+D at 0.55, 0.98, 1.10 and 1.30 eV: A distorted wave study, unpublished manuscript (1985).

    Google Scholar 

  32. N.J. Dutton, I.W. Fletcher and J. C. Whitehead. Laser-induced fluorescence determination of the internal state distributions of OH(X 2 II) produced in molecular beam reactions of O( 3 p) with some cyclic hydrocarbons, Mol. Phys., 52 475–83 (1984).

    Article  CAS  Google Scholar 

  33. L.S. Dzelzkalns and F. Kaufman, Vibrational relaxation of highly excited diatomics. VI. DF(9⩽v⩽12)+N 2. CO, CO 2 and N 2 O and HF(v=5-7)+CO, J. Chem. Phys., 80. 6114–21 (1984).

    Article  Google Scholar 

  34. R. W. Emmons and S. H. Suck, Distorted-wave Born-approximation study of angular distributions for state-to-state rearrangement collisions: Role of orbital angular momentum, Phys. Rev., 25A. 178–86 (1982).

    Google Scholar 

  35. R. W. Emmons and S. H. Suck, Equivalence between the prior-and post-interaction forms in the distorted-wave Born-approximation transition amplitude. Phys. Rev., 25A, 2385–7 (1982).

    Google Scholar 

  36. R. W. Emmons and S. H. Suck. State-to-state and state-to-all states reactive scattering angular distributions: F+H2 → HF+H, Phys. Rev., 27A, 1803–11 (1983).

    Google Scholar 

  37. R. W. Emmons, C. R. Klein and S.H. Suck Salk, Variation of direct-process contribution with collision energy in reactive scattering. Phys. Rev., 29A, 1131–4 (1984).

    Google Scholar 

  38. B.C. Eu. J.H. Huntington and J. Ross, Direct interaction theory of reactive molecular collisions: K+Br 2 system, Can. J. Phys., 49. 966–70 (1971).

    Article  CAS  Google Scholar 

  39. A. Gelb and R.J. Suplinskas. Influence of the distorted wave approximation in calculations of chemical reaction cross sections: Ar + +HD, J. Chem. Phys., 53. 2249–57 (1970).

    Google Scholar 

  40. T. F. George and J. Ross. Quantum dynamical theory of molecular collisions, Ann. Rev. Phys. Chem., 24. 263–300 (1973).

    Article  CAS  Google Scholar 

  41. D.P. Gerrity and J.J. Valentini. Experimental study of the dynamics of the H+D 2HD+D reaction at collision energies of 0.55 and 1.30 eV, J. Chem. Phys., 81. 1298–313 (1984).

    Article  CAS  Google Scholar 

  42. R. G. Gilbert and T. F. George. On the distorted wave approximation for chemical reactions, Chem. Phys. Lett., 20. 187–92 (1973).

    Article  CAS  Google Scholar 

  43. N. K. Glendenning, Direct Nuclear Reactions (Academic Press, New York. 1983).

    Google Scholar 

  44. S. Golden and A.M. Peiser. The quantum mechanics of chemical kinetics of homogeneous gas phase reactions II. Approximations for displacement reaction between an atom and a diatomic molecule, J. Chem. Phys., 17. 630–43 (1949): erratum ibid.,17. 842 (1949).

    Article  CAS  Google Scholar 

  45. S. Golden. Note on the quantum-mechanical calculation of reaction rates, J. Chem. Phys., 21. 2071–2 (1953).

    Article  CAS  Google Scholar 

  46. S. Golden. Adequacy of the Born approximation in the calculation of chemical reaction rates: A reply to Yasumori and Sato, J. Chem. Phys., 22. 1938–9 (1954).

    CAS  Google Scholar 

  47. L. M. Hubbard. S-h. Shi and W. H. Miller. Multichannel distorted wave Born appriximation for reactive scattering, J. Chem. Phys., 78. 2381–7 (1983)

    Article  CAS  Google Scholar 

  48. B. R. Johnson and N.W. Winter. Classical trajectory study of the effect of vibrational energy on the reaction of molecular hydrogen with atomic oxygen, J. Chem. Phys., 66. 4116–20 (1977).

    Article  CAS  Google Scholar 

  49. N. Jonathan. S. Okuda and D. Timlin, Initial vibrational energy distributions determined by infra-red chemiluminescenco III. Experimental results and classical trajectory calculations for the H+F2 system, Mol. Phys., 24. 1143–64 (1972); erratum ibid., 25. 496 (1973).

    Article  CAS  Google Scholar 

  50. N.B.H. Jonathan. J. P. Liddy. P. V. Sellers and A.J. Stace. Initial vibrational energy distributions determined by infrared chemiluminescence: the D/F 2 system, Mol. Phys., 39. 615–27 (1980).

    Article  CAS  Google Scholar 

  51. M. Karplus and K. T. Tang. Quantum-mechanical study of H+H 2 reactive scattering. Disc. Faraday Soc., 44, 56–67 (1967).

    Article  Google Scholar 

  52. M. Karplus. Special results of theory: Distorted waves, in Molecular Beams and Reaction Kinetics, Proc. of the Int. School of Physics “Enrico Fermi”. Course 44. edited by Ch. Schlier (Academic. New York. 1970) pp. 407–26.

    Google Scholar 

  53. V.G. Levich. A.M. Brodskii and V. V. Tolmachev. Wave theory for the cross sections of gas-phase substitution reactions I. Derivation of the equations for the cross sections, Khim. Vys. Energ., 4. 101–7 (1970): English translation: High Energy Chem., 4. 87-92 (1970).

    CAS  Google Scholar 

  54. R. D. Levine, Simplistic analysis of reactive scattering II. Initial and final distortions, Israel J. Chem., 8. 13–28 (1970).

    CAS  Google Scholar 

  55. V. Lopez, V. K. Babamov and R. A. Marcus. A simple DWBA (“Franck-Condon”) treatment of H-atom transfers between two heavy particles, J. Chem. Phys., 81. 3962–6 (1984).

    Article  CAS  Google Scholar 

  56. A.C. Luntz and P. Andresen. The chemical dynamics of the reactions of O(3p) with saturated hydrocarbons. II. Theoretical model,J. Chem. Phys.. 72. 5851–6 (1980).

    CAS  Google Scholar 

  57. P.A. Madden. The exponential approximation for collinear reactive scattering, Mol. Phys., 29. 381–8 (1975).

    Article  CAS  Google Scholar 

  58. E.E. Marinero. C.T. Rettner and R. N. Zare, H+D 2 reaction dynamics. Determination of the product state distributions at a collision energy of 1.3 eV. J. Chem. Phys.. 80. 4142–56 (1984).

    CAS  Google Scholar 

  59. A. Messiah. Quantum Mechanics, translated from the French by J. Potter (North-Holland. Amsterdam. 1970) Vol II. Chap. XIX.

    Google Scholar 

  60. D.A. Micha. A quantum mechanical model for simple molecular reactions, Ark. Fys. 30. 411–23 (1965).

    CAS  Google Scholar 

  61. D.A. Micha. The exchange reaction of H and H 2, Ark. Fys., 30. 425–36 (196

    CAS  Google Scholar 

  62. D.A. Micha, Angular distribution of products of hydrogen atom-hydrogen molecule reactions, Ark. Fys., 30, 437–47 (1965).

    CAS  Google Scholar 

  63. D.A. Micha. Quantum theory of reactive molecular collisions. Adv. Chem. Phys., 30. 7–75 (1975).

    Article  CAS  Google Scholar 

  64. W. H. Miller. Distorted-wave theory for collisions of an atom and a diatomic molecule, J. Chem. Phys., 49. 2373–81 (1968).

    Article  CAS  Google Scholar 

  65. D.M. Neumark, A.M. Wodtke, G.N. Robinson, C.C. Hayden and Y.T. Lee, Molecular beam studies of the F+H 2 reaction, J. Chem. Phys., 82. 3045–66 (1985).

    Article  CAS  Google Scholar 

  66. E.E. Nikitin and L. Zülicke, Selected Topics of the Theory of Chemical Elementary Processes, Lecture Notes in Chemistry. No, 8 (Springer. Berlin. 1978).

    Google Scholar 

  67. J.C. Pirkle. Jr., and H.A. McGee. Jr., Perturbed Morse oscillator approximation in reactive collisions. I. An attractive potential. J, Chem. Phys., 49, 3532–40 (1968).

    Article  CAS  Google Scholar 

  68. J.C. Pirkle, Jr., and H.A. McGee. Jr., Perturbed Morse oscillator approximation in reactive collisions. II. A repulsive potential, J. Chem. Phys., 49. 4504–8 (1968).

    Article  CAS  Google Scholar 

  69. J.C. Polanyi and J.J. Sloan. Energy distribution among reaction products. VII. H+F 2, J. Chem. Phys., 57. 4988–98 (197

    Article  CAS  Google Scholar 

  70. J.C. Polanyi, J, L. Schreiber and J.J. Sloan, Distribution of reaction products (theory), XI. H+F 2, Chem. Phys., 9. 403–21 (1975).

    Article  CAS  Google Scholar 

  71. L. S. Rodberg and R. M. Thaler. Introduction to the Quantum Theory of Scattering, (Academic, New York. 1967).

    Google Scholar 

  72. G.R. Satchler. Direct Nuclear Reactions (Clarendon Press. Oxford 1983).

    Google Scholar 

  73. G.C. Schatz and A. Kuppermann. Quantum mechanical reactive scattering for three-dimensional atom plus diatom systems. II. Accurate cross sections for H+H 2, J. Chem. Phys., 65. 4668–92 (1976).

    Article  CAS  Google Scholar 

  74. G.C. Schatz. Overview of reactive scattering,in Potential Energy Surfaces and Dynamics Calculations for Chemical Reactions and Molecular Energy Transfer,edited by D.G. Truhlar (Plenum. New York. 1981) pp. 287–310.

    Google Scholar 

  75. G.C. Schatz. L. M. Hubbard. P. S. Dardi and W. H. Miller. Coupled channel distorted wave calculations for the three-dimensional H+H 2 reaction, J. Chem. Phys., 81. 231–40 (1984).

    Article  CAS  Google Scholar 

  76. G.C. Schatz. A coupled states distorted wave study of the O(3 P)+H2(D2,HD,DH) reaction, J. Chem. Phys., (in the press).

    Google Scholar 

  77. R, Schinke and W. A. Lester Jr., Trajectory study of O+H 2 reactions on fitted ab initio surfaces. I. triplet case, J. Chem. Phys., 70. 4893–902 (1979); erratum ibid., 72, 682 1. (1980).

    Article  CAS  Google Scholar 

  78. Y. Shan. B.H. Choi. R. T. Poe and K. T. Tang. Three-dimensional quantum mechanical study of the F+H 2 reactive scattering.Chom. Phys. Lett., 57. 379–84 (1978).

    Article  CAS  Google Scholar 

  79. S. H. Suck, Theory of atom-diatom reactive scattering based on the distorted-wave Born approximation. Phys. Rev., 15A. 1893–9 (1977): erratum ibid., 24A. 2865 (1981).

    Google Scholar 

  80. S.H. Suck. A DWBA study of angular distributions for the state-to-state reactive scattering angular process of F+H 2HF+H. Chem. Phys. Lett., 77. 390–3 (1981).

    Article  CAS  Google Scholar 

  81. S.H. Suck. The kernel of DWBA transition amplitude in atom-diatom reactive scattering.Int. J. Quant. Chem., 19. 441–50 (1981).

    Article  CAS  Google Scholar 

  82. S.H. Suck and R.W. Emmons. Effect of partial wave interference on angular distributions and sideways scattering in rearrangement collisions.Chem. Phys. Lett., 79. 93–6 (1981).

    Google Scholar 

  83. S.H. Suck and R.W. Emmons, Two-body rearrangement collision of atom-diatomic-molecule system: Role of wave-number matching. Phys. RGV., 24A, 129–37 (1981).

    Google Scholar 

  84. S.H. Suck. Theory of atom-diatom rearrangement collisions based on the coupled-channel Born approximation. Phys. Rev., 27A, 187–98 (1983).

    Google Scholar 

  85. S.H. Suck Salk. R.W. Emmons and C. R. Klein. Role of angular momentum match in state-to-state reactive scattering and product rotational state distributions. Phys. Rev., 29A, 1135–9 (1984).

    Google Scholar 

  86. S.H. Suck Salk. C. R. Klein and C. K. Lutrus. DWBA predicted relative product state distribution for H+D2 → HD+D. Chem. Phys. Lett., 110, 112–4 (1984).

    Article  Google Scholar 

  87. S.H. Suck Salk and R.W. Emmons. Preferential angular momentum transfer in state-to-state reactive scattering. Phys. Rev., 29A, 2906–8 (1984).

    Google Scholar 

  88. S.H. Suck and R.W. Emmons. Importance of relative angular momentum coherence in state-to-state rearrangement collisions (reactive scattering). The 9th Symposium of Korean Science and Technology. 3–6 July 1984. Seoul. Korea. 1. 46–9 (1984).

    Google Scholar 

  89. S. H. Suck Salk and C. K. Lutrus. Comparison between approximate (perturbation) and exact (close-coupling) three-dimensional quantal methods in reactive scattering. J. Chem. Phys., (in the press).

    Google Scholar 

  90. J.C. Sun, B.H. Choi. R.T. Poe and K.T, Tang, Quantum theory of D+H 2 rearrangement collision: Effects of vibrational excitation. Phys. Rev. Lett., 44. 1211–4 (1980).

    Article  Google Scholar 

  91. J.C. Sun, B.H. Choi. R.T. Poe and K.T. Tang. Three-dimensional quantum mechanical studies of D+H2 → HD+H reactive scattering. IV. Cross sections and rate constants with rotationally excited target molecules. J. Chem. Phys., 73. 6095–107 (1980).

    Article  Google Scholar 

  92. J.C. Sun, B.H. Choi. R.T. Poe and K.T. Tang. Three dimensional effects on the linear adiabatic molecular wavefunctions in the H+H 2 system. Chem. Phys. Lett., 82. 255–9 (1981).

    Article  CAS  Google Scholar 

  93. J.C. Sun, B.H. Choi, R.T. Poe and K.T. Tang. Adiabatic T matrix theory for three dimensional reactive scattering: Application to the (H, H 2) system, J. Chem. Phys., 78. 4523–32 (1983).

    Article  CAS  Google Scholar 

  94. J.C. Sun. B.H. Choi. R.T. Poe and K.T. Tang. Jhree dimensional quantum mechanical studies of D+H 2 + DH+H reactive scattering. V. Cross sections and rate constants from the adiabatic T matrix theory. J. Cham. Phys., 79. 5376–85 (1983).

    Article  CAS  Google Scholar 

  95. R.J. Suplinskas and J. Ross, Perturbed-stationary-state calculation of collisions in a reactive system, J. Chem. Phys., 47. 321–30 (1967).

    Article  CAS  Google Scholar 

  96. K.T. Tang and M. Karplus. Quantum Theory of (H,H 2) Scattering: Two-body potential and elastic scattering. J. Chem. Phys., 49. 1676–92 (1968).

    Article  CAS  Google Scholar 

  97. K.T. Tang and M. Karplus. Quantum theory of (H,H 2) Scattering; Approximate treatments of reactive scattering. Phys. Rev., 4A, 1844–58 (1971).

    Google Scholar 

  98. K.T. Tang. Quantum cross sections of D+H 2HD+H reaction, J. Chem. Phys., 57. 1808–9 (1972).

    Article  CAS  Google Scholar 

  99. K.T. Tang and B.H. Choi. Three-dimensional quantum mechanical studies of D+H 2HD+H reactive scattering.J. Chem. Phys., 62, 3642–58 (1975).

    Article  CAS  Google Scholar 

  100. K.T. Tang and B.H. Choi. Three-dimensional quantum mechanical studies of H+H 2 and D+H 2 reactive scatterings, in Electronic and Atomic Collisions. Abstracts of Papers of the IXth International Conference on the Physics of Electronic and Atomic collisions, edited by J.S. Risley and R. Geballe (Univ. of Washington Press. Seattle. 1975) Vol. 1. pp. 367–8.

    Google Scholar 

  101. K.T. Tang and J.R. Grover. Reconciliation of crossed-beam results on the hydrogen exchange reaction, in International Conference on the Physics of Electronic and Atomic Collisions. 10th. Abstracts of Papers. edited by Commissariat á I’Energie Atomique. Paris. (North-Holland. Amsterdam. 1977) Vol. 1. p. 26.

    Google Scholar 

  102. K.T. Tang. Y.Y. Yung. B.H. Choi and R.I. Poe. Three-dimensional quantum mechanical studies of He+H 2 + → HeH ++H reactive scattering. in Electronic and Atomic Collisions. Xlth International Conference on the Physics of Electronic and Atomic Collisions. 29 August–4 September 1979. Kyoto International Conference Hall. Kyoto. Japan. Abstracts of Contributed Papers, edited by K, Takayanagi and N. Oda (North-Holland. Amsterda. 1979) pp. 894–5.

    Google Scholar 

  103. K.T. Tang, Approximate treatments of reactive scattering: the 7 matrix approach, in Theory of Chemical Reaction Dynamics, edited by M. Baer (CRC Press, Boca Raton. 1985) Vol. II.

    Google Scholar 

  104. R. B. Walker and R.E. Wyatt. DWBA study of the coilinear H+H 2 reaction, Chem. Phys. Lett., 16. 52–6 (1972).

    Article  CAS  Google Scholar 

  105. R. B. Walker and R. E. Wyatt. Three-dimensional reaction cross sections from planar scattering data, Mol. Phys., 28, 101–11 (1974).

    Article  CAS  Google Scholar 

  106. R. B. Walker and R.E. Wyatt. Investigation of the planar H+H 2 reaction near threshold, J. Chem. Phys., 61. 4839–47 (1974).

    Article  CAS  Google Scholar 

  107. R.B. Walker, E. B. Stechel and J.C. Light, Accurate H 3 dynamics on an accurate H 3 potential surface, J. Chem. Phys., 69. 2922–3 (1978).

    Article  CAS  Google Scholar 

  108. R.B. Walker and J.C. Light, Reactive molecular collisions, Ann. Rev. Phys. Chem., 31. 401–33 (1980).

    Article  CAS  Google Scholar 

  109. R. E. Wyatt. Reactive scattering cross sections II: Approximate quanta! treatments, in Atom-Molecule Collision Theory. A Guide for the Experimentalist, edited by R. B. Bernstein (Plenum, New York. 1979) pp. 477–503.

    Google Scholar 

  110. Y. Y. Yung, B.H. Choi and K. T. Tang. Three dimensional quantum mechanical studies of D+H 2HD+H reactive scattering. III. On the ab initio potential energy surface, J. Chem. Phys., 72. 621–9 (1980).

    Article  CAS  Google Scholar 

  111. Ch. Zuhrt. F. Schneider and L. Zülicke. The distorted-wave Born approximation applied to chemically reactive systems. Endoergic exchange processes H 2 + (He, H)HeH +, Chem. Phys. Lett., 43. 571–5 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 D. Reidel Publishing Company

About this chapter

Cite this chapter

Connor, J.N.L. (1986). The Distorted Wave Theory of Chemical Reactions. In: Clary, D.C. (eds) The Theory of Chemical Reaction Dynamics. NATO ASI Series, vol 170. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4618-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4618-7_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8552-6

  • Online ISBN: 978-94-009-4618-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics