Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 166))

Abstract

Calculation of molecular energy derivatives represents now a very significant part of electronic structure studies. Theoreticians have at their disposal powerful tools for calculating molecular geometries, reaction pathways, and first- and second- order properties. The early work of Pulay (1) using ab initio wavefunctions, and of McIver and Komornicki (2) using semi-empirical wavefunctions, has been extended to the calculation of second and even third derivatives for a wide variety of wavefunctions (3–12), including multiconfiguration Hartree-Fock, configuration interaction, and perturbation wavefunctions. It is worth noting that the treatment of electron correlation effects is quite extended and accurate with these wavefunctions, but also that extended basis sets including polarization functions are often used. All of these features lead to quantum chemical studies of high accuracy and reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Pulay, Mol. Phys. 17, 197 (1969)

    Article  CAS  Google Scholar 

  2. 18, 473 (1970); 329 (1971).

    Google Scholar 

  3. J.W. McIver, Jr. and A. Komornicki, Chem. Phys. Lett. 10, 303, (1971).

    Article  CAS  Google Scholar 

  4. S. Kato, and K. Morokuma, Chem. Phys. Lett. 65, 19 (1979).

    Article  CAS  Google Scholar 

  5. J.D. Goddard, N.C. Handy, and H.F. Schaefer III, J. Chem. Phys. 71, 1525 (1979).

    Article  CAS  Google Scholar 

  6. J.A. Pople, R. Krishnan, H.B. Schlegel, and J.S. Binkley, Int.J. Quant. Chem. S13, 225 (1979).

    Google Scholar 

  7. B.R. Brooks, W.D. Laidig, P. Saxe, J.D. Goddard, Y. Yamaguchi, and H.F. Schaefer III, J. Chem. Phys. 72, 4652 (1980).

    Article  CAS  Google Scholar 

  8. R. Krishnan, H.B. Schlegel, and J.A. Pople, J. Chem. Phys. 72, 4654 (1980).

    Article  CAS  Google Scholar 

  9. M. Dupuis, J. Chem. Phys. 74, 5758 (1981).

    Article  CAS  Google Scholar 

  10. Y. Osamura, Y. Yamaguchi, and H.F. Schaefer III, J. Chem. Phys. 77, 383 (1982).

    Article  CAS  Google Scholar 

  11. R.N. Camp, H.F. King, J.W. McIver, and D. Mullaly, J. Chem. Phys. 79, 1088 (1983).

    Article  CAS  Google Scholar 

  12. P. Pulay, J. Chem. Phys. 78, 5043 (1983).

    Article  CAS  Google Scholar 

  13. J. Simons, and P. Jørgensen, J. Chem. Phys. 79, 334 (1983).

    Article  Google Scholar 

  14. K. Thomsen, and P. Swanström, Mol. Phys. 26, 735 (1973).

    Article  CAS  Google Scholar 

  15. M. Dupuis, J. Rys, and H.F. King, J. Chem. Phys. 60, 111 (1976).

    Article  Google Scholar 

  16. J. Rys, M. Dupuis, and H.F. King, J. Comp. Chem. 4,154 (1983).

    Article  CAS  Google Scholar 

  17. L.E. McMurchie, and E.R. Davidson, J. Comp. Phys. 26, 218 (1978).

    Article  CAS  Google Scholar 

  18. B.S. Schlegel, J.S. Binkley, and J.A. Pople, J. Chem. Phys. 80, 000 (1984).

    Article  CAS  Google Scholar 

  19. P. Saxe, Y. Yamaguchi, and H.F. Schaefer III, J. Chem. Phys. 77, 5647 (1982).

    Article  CAS  Google Scholar 

  20. J. Detrich, G. Corongiu, and E. Clementi, Chem. Phys. Letts. 112, 426 (1984).

    Article  CAS  Google Scholar 

  21. M. Dupuis, and E. Clementi, to be published.

    Google Scholar 

  22. P.D. Dacre, Chem. Phys. Lett. 7,47 (1970).

    Article  CAS  Google Scholar 

  23. M. Dupuis, and H.F. King, Int. J. Quant. Chem. 11, 613 (1977).

    Article  CAS  Google Scholar 

  24. M. Dupuis, and H.F. King, J. Chem. Phys. 68, 3998 (1978).

    Article  CAS  Google Scholar 

  25. T. Takada, M. Dupuis, and H.F. King, J. Chem. Phys. 75, 332 (1981).

    Article  CAS  Google Scholar 

  26. T. Takada, M. Dupuis, and H.F. King, J. Comp. Chem. 4,234 (1983).

    Article  CAS  Google Scholar 

  27. A. Komornicki, K. Ishida, K. Morokuma, R. Ditchfield, and M. Corad, Chem. Phys. Lett. 45, 595 (1977).

    Article  CAS  Google Scholar 

  28. L.R. Kahn, J. Chem. Phys. 75, 3962 (1981).

    Article  CAS  Google Scholar 

  29. M. Vincent, P. Saxe, and H.F. Schaefer III, Chem. Phys. Lett. 110, 1 (1983).

    Google Scholar 

  30. P. Carsky, B.A. Hess, Jr., and L.S. Schaad, J. Comp. Chem. 5, 280 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 D. Reidel Publishing Company

About this chapter

Cite this chapter

Dupuis, M., King, H.F. (1986). Energy Derivatives and Symmetry. In: Jørgensen, P., Simons, J. (eds) Geometrical Derivatives of Energy Surfaces and Molecular Properties. NATO ASI Series, vol 166. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4584-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4584-5_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8537-3

  • Online ISBN: 978-94-009-4584-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics