Internal Dynamics and Formation of Emission Clouds in Active Galactic Nuclei

  • Isaac Shlosman
  • Peter A. Vitello
  • Giora Shaviv
Part of the Astrophysics and Space Science Library book series (ASSL, volume 121)


We show that cool UV accretion disks, if present in active galactic nuclei, can be sources of line driven winds. Continuum subcritical disks are shown to possess optically thin continuum winds which are accelerated by radiation pressure in lines.

Results of numerical simulation of outflows from disks around supermassive black holes are presented. The necessary condition for wind initiation is the existence of an appropriate circumstance in which the absorption lines coincide with the radiation peak. Such a situation is shown to arise in the shielded region of the disk, the shield being provided by the disk atmosphere.

The winds are characterized by steep velocity gradients and high asymptotic velocities v/c ∼ 1/30, as observed in broad emission-line regions of OSO’s and Seyfert galaxies, and are thermally unstable as they heat up. This results in a two-phase equilibrium: cold clouds embedded in a hot, Compton-heated background. The hot wind provides the pressure confinement for the dense and massive clouds.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balbus S.A. and McKee C.F. 1982 Ap. J. 252, 529.ADSCrossRefGoogle Scholar
  2. 2.
    Bardeen J. and Petterson J.A. 1974 Ap. J. Lett. 195, L65.ADSCrossRefGoogle Scholar
  3. 3.
    Castor J.I., Abbot D.C. and Klein R.I. 1975 Ap. J. 195, 157.ADSCrossRefGoogle Scholar
  4. 4.
    Davidson K. and Netzer H. 1979, Rev. Mod. Phys. 51, 715.ADSCrossRefGoogle Scholar
  5. 5.
    Field G.B. 1965 Ap. J. 142, 531.ADSCrossRefGoogle Scholar
  6. 6.
    Hutchings J.B. and Gower A.C. 1984 preprint.Google Scholar
  7. 7.
    Icke V. 1977 Nature 266, 699.ADSCrossRefGoogle Scholar
  8. 8.
    Krolik J.H., McKee C.F. and Tarter C.B. 1981 Ap. J. 249, 422.ADSCrossRefGoogle Scholar
  9. 9.
    Lucy L.B. and Solomon P.M. 1970 Ap. J. 159, 879.ADSCrossRefGoogle Scholar
  10. 10.
    Malkan M.A. and Sargent W.L.W. 1982 Ap. J. 254, 22.ADSCrossRefGoogle Scholar
  11. 11.
    Oke J.B., Neugebauer G. and Backlin E.E. 1970 Ap. J. 159, 341.ADSCrossRefGoogle Scholar
  12. 12.
    Readhead A.C.S., Cohen M.H. and Blandford R.D. 1978 Nature 272, 131.ADSCrossRefGoogle Scholar
  13. 13.
    Rees M.J. and Ostriker J.P. 1977 A. J. 179, 541.ADSGoogle Scholar
  14. 14.
    Shakura N.I. and Sunyaev R.A. 1973 Astr. Ap. 24. 337.ADSGoogle Scholar
  15. 15a.
    Shlosman I., Vitello P.A. and Shaviv G. 1984 Ap.J. (in press).Google Scholar
  16. 15b.
    Shlosman I., Vitello P.A. and Shaviv G. 1985 (in preparation).Google Scholar
  17. 16.
    Wilson A.S., Baldwin J.A. and Ulvestad J.A. 1984 preprint.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1986

Authors and Affiliations

  • Isaac Shlosman
    • 1
  • Peter A. Vitello
    • 2
  • Giora Shaviv
    • 3
  1. 1.Department of PhysicsUniversity of FloridaGainesvilleUSA
  2. 2.Science Application Inc.McLeanUSA
  3. 3.Department of PhysicsTechnion-Israel Institute of TechnologyHaifaIsrael

Personalised recommendations