Skip to main content

Part of the book series: Nato Asi Series ((NSSE,volume 114))

  • 519 Accesses

Abstract

The characteristics of some selected melt quenching processes to produce continuous ribbons or tapes was discussed.

To understand the process physics and to quantify the effects of process variables on ribbon geometry and as-quenched microstrueture mathematical models have been formulated. Because ribbon formation is a complex process it is difficult to give an accurate (mathematical) description. Therefore empirical correlations have been established between process variables and ribbon gecmetiry or the occurrence of geometrical defects.

In the mathematical models both fluid and heat transfer aspects are considered and the ribbon formation is characterized by the propagation of the thermal and momentum boundary layers.

The existing models only successfully describe the experimental observations to a limited extent. A rigorous mathematical model of these processes, including the development of the as-quenched microstrueture, requires quantitative descriptions of solute redistribution and nucleation and growth of alloys at high quench rates taking into account the various thermodynamic and kinetic factors.

Difficulties and limitations in incorporating these effects in the mathematical models will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jones H, Rapid Solidification of Metals and Alloys, The Institution of Metallurgist, Monograph No. 8, London, UK, 1982.

    Google Scholar 

  2. Savage S J and Froes F H, J. Metals, 1984, 36(4), 20–33.

    Google Scholar 

  3. Amorphous and Metastable Microcrystailine Rapidly Solidified Alloys: Status and Potential, Report NMAB-358, National Materials Advisery Board, Washington DC, 1980.

    Google Scholar 

  4. Liebermann H H in “Amorphous Metallic Alloys”, ed. Luborsky F E, Butterworths, London, 1983.

    Google Scholar 

  5. Cliff R, Grace J R and Weber M E, “Bubbles, Drops and Particles”, Academic Press, New York, 1978.

    Google Scholar 

  6. Anthony T R and Cline H E, J. Appi. Phys., 49, 1978, 829.

    Google Scholar 

  7. Liebermann H H, J. Appl. Phys., 50, 1979, 6773.

    Google Scholar 

  8. Liebermann H H, J. Mater. Sci., 15, 1981, 2771–2776.

    Google Scholar 

  9. Pavuna D, J. Non.Cryst.Solids., 37, 1980, 133–137.

    Google Scholar 

  10. Narasimhan M, (a) US Patent No. 4212343, 1980; (b) US Patent No. 4221257, 1980.

    Google Scholar 

  11. Narasimhan M, US Patent No. 414257, 1979.

    Google Scholar 

  12. Huber J, Mollard F and Lux B, Z. Metallk., 64, 1973, 835.

    Google Scholar 

  13. Narasimhan M, US Patent 4330027, 1982.

    Google Scholar 

  14. Zielinsky P G and Ast D G, J. Mater.Sci. Letters, 2, 1983,, 495–498.

    Google Scholar 

  15. Kimura H, Cunningham B and Ast D G in “Rapidly Quenched Metals IV”, eds. Masumoto T and Suzuki H, The Japan Inst, of Metals, Sendai, 1982, 1385.

    Google Scholar 

  16. Anthony T R and Cline H E, J.Appl.Phys. 50 1979, 245.

    Google Scholar 

  17. Liebermann H H in “Rapidly Quenched Metals III”, ed. Cantor B, The Metals Society, London 1978, 34.

    Google Scholar 

  18. Kavesh S in “Metallic Glasses”, eds. Gilman J J and Leamy H J, ASM, Ohio 1976, 36.

    Google Scholar 

  19. Liebermann H H and Graham C D, IEEE, Trans. Magn.,12, 1976, 921.

    Google Scholar 

  20. Liebermann H H, Mater.Sci.Eng., 43, 1980, 203.

    Google Scholar 

  21. Vincent J H, Davies H A and Herbertson J G in “Continuous Casting of Small Cross Sections”, eds. Murty Y V and Mollard F R, TMS-AIME, Warrendale Pa. 1981, 103.

    Google Scholar 

  22. Vincent J H, Davies H A and Herbertson J G, as ref. 15, 77.

    Google Scholar 

  23. Vincent J H, Davies H A in “Solidification Technology in the Foundry and Casthouse”, The Metals Society, London 1983, 153.

    Google Scholar 

  24. Vincent J H, Davies H A and Herbertson J G, J. Mater. Sci. Letters 2, 1983, 88.

    Google Scholar 

  25. Hillmann H H and Hiltzinger, as ref. 17, 22.

    Google Scholar 

  26. Pavuna D, J. Mater.Sci., 16 1981, 2419.

    Google Scholar 

  27. Huang S C, General Electric Report No. 81 CRD 152, 1981.

    Google Scholar 

  28. Charter S J B, Mooney D R, Cheese R and Cantor B, J. Mater. Sci. 15, 1980, 2658.

    Google Scholar 

  29. Fiedler H, Muhlbach H and Stephani G, J. Mater. Sci., 19. 3229.

    Google Scholar 

  30. Schlichting H, “Boundary Layer Theory”, Mc Graw-Hill, London 1979, ch. 2.

    Google Scholar 

  31. Carnahan, Luther H A and Wilkes J O, “Applied Numerical Methods”, Wiley New York 1969, 407.

    Google Scholar 

  32. Sakiadis B C, A.I.Ch.E. Journ., 7, 1961, 221.

    Google Scholar 

  33. a) Katgerman L in “Modelling of Casting and Welding Porcesses II”, eds. Dantzig J A and Berry J T, TMS-AIME, Warrendale Pa. 1984, 135; (b) Katgerman L and van den Brink P J, as ref. 15, 61; (c) Katgerman L, Scripta Met. 14, 1980, 861; (d) Katgerman L and Zalm WE in “Numerical Methods in Laminar and Turbulent Flow III”, eds. Taylor C A et al., Pineridge Press Swansea 1983, 157.

    Google Scholar 

  34. Shingu P H, Kobayashi K, Suzuki R and Takeshita K, as ref. 15, 57.

    Google Scholar 

  35. Ruhl R C, Mater.Sci. Eng., 1 1967, 313.

    Google Scholar 

  36. Shingu P H and Ozaki R, Met.Trans., 6A 1974, 33–37

    Google Scholar 

  37. Clyne T W and Garcia A, J. Mater.Sci. 16 1981, 1643.

    Google Scholar 

  38. Burden M H and Jones H, J.I.M. 98 1970, 249.

    Google Scholar 

  39. Carslaw H S and Jaeger J C, “Conduction of Heat in Solids”, Oxford University Press 1959, ch. 11.

    Google Scholar 

  40. Jones H, J.I.M. 40 1969, 38.

    Google Scholar 

  41. Clyne T W, Met. Trans. 1984, 369.

    Google Scholar 

  42. Flemings M C, “Solidification Processing”, Mc Graw-Hill New York 1974, ch. 9

    Google Scholar 

  43. den Decker P and Drevers A in “Metallic Glasses: Science and Technology, Budapest, Hungary 1980, 181.

    Google Scholar 

  44. Kuiken H K, Int. J. Heat Mass Transfer 20 1977, 309.

    Google Scholar 

  45. Takeshita K and Shingu P H, Trans.Jap.Inst.Met. 24 1983, 529.

    Google Scholar 

  46. Colliqan G A and Bayles B J, Acta Met. 10, 1962, 895.

    Article  Google Scholar 

  47. Perepezko J H and Rasmussen D H, Met. Trans 9A, 1978, 1490.

    Article  Google Scholar 

  48. Chu M G, Shoihara Y and Flemings M C in “Chemistry and Physics of Rapidly Solidified Materials”, eds. Berkowitz B J and Scattergood R O,

    Google Scholar 

  49. Turnbull D and Bagley B G in “Treatise on Solid State Chemistry”, eds. Hannay N B, Plenum New York, 1975, Vol. 5, 513.

    Google Scholar 

  50. Coriell S R and Turnbull D, Acta Met. 30 1982, 2135.

    Google Scholar 

  51. Hillert M and Sundman B, Acta Met. 25, 1977, 11.

    Article  Google Scholar 

  52. Aziz M J, J.Appl. Phys. 53 1982, 1158.

    Article  ADS  Google Scholar 

  53. Boettinger W J and Coriell S R, Mat.Sci. Eng. 65 1984, 27.

    Google Scholar 

  54. Baker J C and Cahn J W, Acta Met. 17 1969, 575.

    Google Scholar 

  55. Coriell S R and Sekerka R F in “Rapid Solidification Processing: Principles and Technology II”, Claytors Baton Rouge USA, 1980, 35.

    Google Scholar 

  56. Ibid., J.Cryst.Growth 61 1983, 499.

    Google Scholar 

  57. Midson S P and Jones H, as ref. 15, 1539.

    Google Scholar 

  58. Katgerman L, Scripta Met. 17, 1983, 537.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Katgerman, L. (1986). Continuous Products in Rapid Solidification. In: Sahm, P.R., Jones, H., Adam, C.M. (eds) Science and Technology of the Undercooled Melt. Nato Asi Series, vol 114. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4456-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4456-5_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8483-3

  • Online ISBN: 978-94-009-4456-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics