Skip to main content

Production and Characterization of Rapidly-Solidified Particulates

  • Chapter
Book cover Science and Technology of the Undercooled Melt

Part of the book series: Nato Asi Series ((NSSE,volume 114))

Abstract

The contribution aims to give a perspective of the ever-expanding range and variety of methods of manufacturing rapidly-solidified (RS) particulates and the fundamental characteristics of their products. Particular attention will be given to more recent developments and to possible criteria for assessing their efficacy. These might include rating of the following capabilities:

  1. (i)

    to generate a required particle size or size distribution and particle morphology.

  2. (ii)

    to achieve a required structural state within the particulate.

  3. (iii)

    to successfully process materials of different characteristics such as fusibility and reactivity.

  4. (iv)

    to accommodate minimum levels of production volume and rate.

Criteria (i) and (ii) are closely linked and rather basic and will receive particular attention in the contribution. It is concluded that understanding of the mechanisms by which the various methods form and solidify the particulate is still largely in its infancy and that relationships between operating variables and RS structure remain to be determined for many of these production processes. In view of uncertainties concerning applicable cooling and solidification conditions for particular processes, there is some merit in ranking them in terms of their ability to produce a given microstructure or constitution at a particular particle size. Evaluation of properties as a function of RS microstructure or constitution and of variables in any subsequent consolidation remain fruitful areas of further study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jones in “Ultrarapid Quenching of Liquid Alloys” ed. H.Herman, Treatise on Materials Science and Technology, Vol. 20,,Academic Press, New York, 1981, 1–71.

    Google Scholar 

  2. Jones H: Rapid Solidification of Metals and Alloys, Monograph No. 8, The Institution of Metallurgists, London, 1982, Ch.2.

    Google Scholar 

  3. Savage SJ and Froes FH, J. Metals, 1984, 36 (4), 20–23.

    Google Scholar 

  4. Maringer RE, SAMPE Quart., 1980, 11 (4), 30–34.

    Google Scholar 

  5. Lawley A, J. Metals, 1981, 33 (1), 13–18.

    Google Scholar 

  6. Grant NJ;(a) in “Advances in Pcwder Metallurgy”, ed. Chin GY, American Society for Metals, Metals Park, Ohio, 1982, 1–21; (b) in “High Strength Aluminium Powder Alloys”, ed. Koczak MJ and Hildeman GJ, The Met. Soc. of AIME, Warrendale, Pa, 1982, 3–18 and J. Metals, 1983, 35 (1), 20–27.

    Google Scholar 

  7. Miller SA; in “Amorphous Metallic Alloys”, ed. Luborsky FE, Butterworths, London, 1983, 506–520.

    Google Scholar 

  8. Butler IG, Kurz W, Gillot J and Lux B, Fibre Sci. and Techn., 1972, 5 243–262.

    Article  Google Scholar 

  9. Hubert JC, Mollard F and Lux B, Z. Metallkunde, 1973, 64 835–843.

    Google Scholar 

  10. Manfré G and Servi G, Wire Industry, 1975, 42 281–286.

    Google Scholar 

  11. Anthony TR and Cline HE, (a) J. Appl. Phys., 1978, 49 829–837, (b) Cline HE and Anthony TR, G.E. Corporate R & D Report, 78CRDO66, April 1978.

    Article  ADS  Google Scholar 

  12. Ohnaka I and Fukusako T, J. Jap. Inst. Light Metals, 1978, 42, 415–124.

    Google Scholar 

  13. Liebermann H H, J. Appl. Phys., 1979, 50 6773–8.

    Article  ADS  Google Scholar 

  14. Aldinger F, Linck E and Clausen N, in “Modern Developments in Powder Metallurgy”, Vol 9, Ed. Hausner H H and Taubenblat P V, MPIF/APMI, Princeton, NJ, 1977, 141–150.

    Google Scholar 

  15. Lacy L L et al, (a) J. Cryst. Growth, 1981, 51 47–60; (b) U.S. Pat. 4278083, 3rd Feb. 1981, (c) J. Appi. Phys., 1982, 682–9, (d) in “Materials Processing in the Reduced Gravity Environment of Space”, ed. Rindone G E, Elsevier North Holland, N.Y., 1982, 87–94.

    Google Scholar 

  16. Steinberg J, Lord A E, Lacy L L and Johnson J, Appl. Phys. Lett., 1981, 38 135–7.

    Article  ADS  Google Scholar 

  17. Kendall J M et al, J. Vac. Sci. Technol., 1982, 20 1091–3.

    Google Scholar 

  18. Lee M C, Kendall J M and Johnson W L, Appl. Phys. Lett., 1982, 40, 382–4.

    Google Scholar 

  19. Lee M C et al, as ref. 17, 95–104 and 105–113.

    Google Scholar 

  20. Johnson W C and Lee M C, J. Vac. Sci. Technol. A, 1983, Al, 1568–70.

    Google Scholar 

  21. Lee M C, (a) SAMPE Journal, Nov./Dec. 1983, 7–11; (b) in Rapidly Quenched Metals, ed. Steeb S and Warlimont H, Elsevier North Holland, N.Y., 1985, 119–122.

    Google Scholar 

  22. Matei G, Biczak W, Huppmann W J and Claussen N, as ref. 14, 153–9.

    Google Scholar 

  23. Lierke E G and Griesshammer G, Ultrasonics, 1967, 5, 224–8

    Article  Google Scholar 

  24. Ruthardt R and Lierke E G, in “Modern Developments in Powder Metallurgy”, Vol. 12, ed. Hausner H H et al, APMI/MPIF, Princeton, N.J., 1981, 105–111.

    Google Scholar 

  25. Klar E and Shafer W M, in “Powder Metallurgy for High Performance Applications” ed. Burke J J and Weiss V, Syracuse University Press, Syracuse, N.Y. 1972, 57–68.

    Google Scholar 

  26. Widmer R, ibid., 69–84.

    Google Scholar 

  27. Gummerson P U, ibid., 27–55.

    Google Scholar 

  28. Miller S A and Murphy R J, Scripta Met., 1979, 23 673–6.

    Article  Google Scholar 

  29. Liddiard P D, in “P/M Aerospace Materials”, Vol. 1, M.P.R. Publishing Services, Shrewsbury, 1984, paper 26.

    Google Scholar 

  30. Smith P, ibid., paper 27, and Metal Powd. Rep., 1985, 40, 159–161.

    Google Scholar 

  31. Fortman W K and Ullman S, Metal Powder Report, 1984, 39 259–261.

    Google Scholar 

  32. Miller S A, presented at RQ5-Wirzburg, Sept. 1984, paper N38.

    Google Scholar 

  33. Couper M J and Singer R F, as ref. 21b, 1737–42.

    Google Scholar 

  34. Wentzell J M, J. Vac. Sci. Technol., 1974, 11, 1035–37; S.M.E. Tech., Paper MF 72–503, 1972.

    Google Scholar 

  35. Singer A R E and Roche A D, as ref. 14, 127–140; Powder Met., 1980 23, 81–85.

    Google Scholar 

  36. Sankaran K K and Grant N J, Mater. Sci. Eng., 1980, 44, 213–217.

    Article  Google Scholar 

  37. Ishii H, Naka M, Masumoto T, (a) Sci. Rep. Res. Inst., Tohoku Univ. A, 1981, A29 343–350; and (b) in “Rapidly Quenched Metals”, ed. Masumoto T and Suzuki H, The Japan Inst, of Metals, Sendai, 1982, 35–8.

    Google Scholar 

  38. Carbonara R S, Raman R V and Clauer A H, as ref. 37b, 141–4.

    Google Scholar 

  39. Onoyama T, Ando 0 and Minakuta T, U.K. Patent Appl., GB 2118080A, 26th October 1983.

    Google Scholar 

  40. Ohnaka I, Yamauchi I, Morimoto M and Fukusako T, J. Jap. Inst. Met., 47, 1010–15.

    Google Scholar 

  41. Ray R, U.S. Patents 4221587, 9th Sept. 1980; 4326841, 27th April 1982.

    Google Scholar 

  42. Goetzel C G, “Treatise on Powder Metallurgy”, Vol. 1, Interscience, N.Y. 1049, 43–5.

    Google Scholar 

  43. Ohnaka I, Fukusako T and Tsutsumi H., J. Jap. Inst. Met., 1982, 46, 1095–102.

    Google Scholar 

  44. Yamauchi I, Kawamoto S, Ohnaka I and Fukusako T, ibid., 1983, 47, 1016–21.

    Google Scholar 

  45. Raman R V, Patel A N and Carbonara R S, Progr. in Powd. Met., 1982, 99–105; Metal Powd. Report, 1984, 39 105–7.

    Google Scholar 

  46. Narasimha Rao and Sekhar J A, Mater. Lett., 1984, 2, 407–410.

    Google Scholar 

  47. Daugherty T S, (a) Progr. Powder Met., 1963, 19, 146–151; (b) J. Metals, 1964, No. 10, 827–830; (c) Powder Met., 1968, 342–357.

    Google Scholar 

  48. Cox A R, Moore J B and van Reuth E C, in “Superalloys: Metallurgy and Manufacture”, Proc. 3rd. Internat. Symp., ed. Kear E H et al, Claitor’s. Baten Rouge, La, 1976, 45–53.

    Google Scholar 

  49. Kaiafmann A R and Muller W C, in “Beryllium Technology”, Vol. 1, ed. Schetky L M and Johnson H A, Gordon and Breach, N.Y., 1966, 629–646, Kaufmann A R, U.S. Patent, 3099041, 30th July 1963.

    Google Scholar 

  50. Sastry S M L, Peng T C, Meschter P J and O’Neal J E, J. Metals, 1983, No. 9, 21–28; Metal Powder Report, 1984, 39, 537–8.

    Google Scholar 

  51. Konitzer D G, Walters K W, Heiser E L and Fraser HL, Met. Trans. B, 1984, 15B, 149–153.

    Google Scholar 

  52. Devillard and Herteman J P, in “Powder Metallxirgy of Titanium Alloys”, ed. Froes F H and Smugeresky J E, The Met. Soc. AIME, Warrendale, Pa, 1980, 59–70.

    Google Scholar 

  53. Loewenstein P, (a) Progr. Powder Met., 1981, 37, 9–21; (b) Metal Powder Report, 1981, 36 59–64.

    Google Scholar 

  54. Hodkin D J, Sutcliffe P W, Mardon P G and Russell L E, Powder Met., 1973, 16, 277–313.

    Google Scholar 

  55. Perel J et al, (a) in “Rapid Solidification Processing: Principles and Technologies”, ed. Mehrabian R et al, Claitor’s, Baton Rouge, La, 1978, 258–269, (b) ibid. II, 1980, 287–293, (c) in “Advances in Metal Processing”, ed. Burke J J et al. Plenum, N.Y., 1981, 79–89, (d) in “Rapidly Solidified Amorphous and Crystalline Alloys”, ed. Kear B H et al, Elsevier North Holland, N.Y., 1982, 131–6.

    Google Scholar 

  56. Clampitt R et al, in “Rapidly Quenched Metals III”, Vol. 1, ed. Cantor B, The Metals Society, 1978, 57–62.

    Google Scholar 

  57. Maringer R E and Mobley CE, J. Vac. Sci. Technol., 1974, 11, 1067–71, Maringer R E, Rudnick A and Mobley C E, U.S. Pat. 3904344, 9th Sept. 1975.

    Google Scholar 

  58. Ray R et al, (a) Met. Progr., 1982, 121, No.7, 29–31; (b) as ref. 38, 1515–19; (c) J. Metals, 1983, 35(6) 30–35; (d) Metal Powder Report, 1984, 287–9; (e) U.S. Patents 4347076, 31st Aug. 1982, 4359352, 16th Nov. 1982; 4379720, 12th April 1983; 4402745, 6th Sept. 1983; 4400212, 23rd Aug. 1983; 4405368, 20th Sept. 1983; 4403115, 7th Febr. 1984.

    Google Scholar 

  59. Whang S H and Giessen B C, Mater. Letters, 1984, 2, 230–1.

    Article  Google Scholar 

  60. Ray R, U.S. Patent 4290808, 22nd Sept. 1981.

    Google Scholar 

  61. Maeland A J and Libowitz G G, Mater. Letters, 1982, 1, 3–5.

    Article  Google Scholar 

  62. Berkowitz A E and Walter J L, (a) in “Rapid Solidification Processing: Principles and Technologies II”, ed. Mehrabian R et al, Claitor’s Baton Rouge, La., 1980, 294–305; (b) Mater. Sci. Eng., 1982, 55 275–87.

    Google Scholar 

  63. Enokizono M and Narita M, Jap. J. Appl. Phys., 1981, 20 2423–4.

    Article  ADS  Google Scholar 

  64. Rasmussen D H, Perepezko J H and Loper C R, in “Rapidly Quenched Metals”, ed. Grant N J and Giessen B C, MIT Press, Cambridge, Ma., 1976, 51–58.

    Google Scholar 

  65. Perepezko J H, Mater. Sci. Eng., 1984, 65, 125–135.

    Article  Google Scholar 

  66. Kattamis T Z and Mehrabian R, J. Vac. Sci, Technol., 1974, 11, 1118–22.

    Article  ADS  Google Scholar 

  67. Lux B, Haour G and Mollard F, as ref. 62a, 429–439.

    Google Scholar 

  68. Drdiman A J, Greer A L and Turnbull D, Appl. Phys. Lett., 1982, 41, 716–17.

    Article  ADS  Google Scholar 

  69. Ohnuma S., Nakanouchi Y and Masumoto T, as ref. 21 (b), 1117–24.

    Google Scholar 

  70. Koch C C, Cavin O B, McKamey C G and Scarborough J O, Appl. Phys. Lett., 1983, 43, 1017–19.

    Article  ADS  Google Scholar 

  71. Schwarz R B, presented at RQ5-Wirzburg, Sept. 194, paper K71.

    Google Scholar 

  72. Yeh X L et al, Appl. Phys. Lett., 1983, 42, 242–244.

    Article  ADS  Google Scholar 

  73. Schwarz R B and Johnson W L, Phys. Rev. Lett., 1983, 51 415–418.

    Article  ADS  Google Scholar 

  74. Van Rossum M, Nicolet M A and Johnson W L, Phys. Rev. B., 1984, 20, 5598–5503.

    Google Scholar 

  75. Atzmon M, Verhoeven J D, Gibson E D and Johnson W L, Appl. Phys. Lett., 1984, 45, 1052–53.

    Article  ADS  Google Scholar 

  76. Singer A R E.Ta) Light Metal Age, 1974, 32 (9,10), 5–8, (b) as ref. 55a, 154–64, (c) Proc. Agard Conf. 256 “Advanced Fabrication Techniques”, Florence 1978, Publ. 1979, Paper 19; (d) Powder Met. 1980, 23, 172–5.

    Google Scholar 

  77. Kim M H and Jones H (a) as ref. 37b, 85–88; (b) as ref. 21b, 139–142.

    Google Scholar 

  78. Singer A R E and Kisakurek S E, Metals Technol., 1976, 3, 565–570.

    Google Scholar 

  79. Singer ARE, Hodkin D J, Sutcliffe P W and Mardon P G, 1983, 10, 105–110.

    Google Scholar 

  80. Shingu PH., Shimomura K and Ozaki R, Trans. Jap. Inst. Met., 1979, 80 33–5.

    Google Scholar 

  81. Miura H, Isa S, Omura K and Tanigumi N, Trans. Jap. Inst. Met., 1981, 22 597–606; as ref. 37(b) 43–6.

    Google Scholar 

  82. Warlimont H and Kunzmann P, as ref. 64, 197–204.

    Google Scholar 

  83. Moss M, Acta Mat., 1968, 68 321–6; Moss M and Schuster D M, Trans. Amer. Soc. Metals, 1969, 62 201–5.

    Google Scholar 

  84. Krishnanand K D and Cahn R W, as ref. 64, 67–75; Cahn R W, as ref. 55a, 129–139.

    Google Scholar 

  85. Giessen B C, Madhara N M, Murphy R J, Ray R and Surette J, Met. Trans. A, 1977, 8A, 364–6.

    Article  Google Scholar 

  86. Jackson M R, Rairden J R, Smith J S and Smith R W, J. Metals, 1981, 33 (11), 23–26.

    Google Scholar 

  87. Singer A R E, Metals Technology, 1984, 11, 99–104; U.S. Patent 4224356, 23rd Sept. 1980.

    Google Scholar 

  88. Jones H, as ref. 64, 1–27.

    Google Scholar 

  89. Singer ARE, Coombs J S and Leatham A G, in “Modern Developments, in Powder Metallurgy”, Vol. 8, ed. Hausner H H and Smith W E, Plenum, N.Y. 1974, 263–280.

    Google Scholar 

  90. Pond R B and Winter J M, Mater. Sci. Eng., 1976, 23, 87–89.

    Article  Google Scholar 

  91. Thompson J S, J. Inst. Met., 1948, 74, 101–132.

    Google Scholar 

  92. Immura K and Takada T, J. Jap. Soc. Powd. Met., 1963, 10, 153–9; Trans. Nat. Res. Inst. Metals, 1963, 5, 82–86.

    Google Scholar 

  93. Hirata T, J. Jap. Soc. Powd. Met., 1964, 11, 29–32.

    Article  Google Scholar 

  94. Silaev A F, Soc. Powd. Met. Met. Ceramics, 1967, 5(3), 350–353.

    Article  Google Scholar 

  95. Nichiporenko O S, ibid, 1967, 60 947–949.

    Google Scholar 

  96. Balasubramanian MSN and Tendolkar, Indian J. Technol., 1968, 6, 205–212.

    Google Scholar 

  97. Tamura K and Wanikawa S, Trans. Nat. Res. Inst. Metals, 1968, 10, 196–7.

    Google Scholar 

  98. Small S and Bruce T J, Internat. J. Powd. Met., 1968, 4(3), 7–17.

    Google Scholar 

  99. Rao P et al, (a) J. Vac. Sci.Technol, 1970, 7 5132–6, (b) in “Chemica’70”, Butterworths, 1971, 1–16.

    Google Scholar 

  100. Domsa A and Berkovits S, in “Modern Developments in Provider Metallurgy” Vol. 4, ed. Hausner H H, Plenum, N.Y., 1971, 63–74

    Google Scholar 

  101. Grandzol R J and Tallmadge J A, (a) AIChEJ., 1973, 19, 1149–58; (b) Internat. J. Powd. Met. and Powd. Technol., 1975, 11, 103–114.

    Google Scholar 

  102. Sundaresan R, Krishnan R V and Raghuram A C, PMAI News Letter, 1977 3(2), 4–9.

    Google Scholar 

  103. Glickstein M R, Patterson R J and Shockey N E, in ref. 62, 46–62.

    Google Scholar 

  104. Lawley A, Ann. Rev. Mater. Sci., 1978, 8, 49–71.

    Article  ADS  Google Scholar 

  105. See J B and Johnston G H, Powder Technol., 1978, 21, 119–133.

    Article  Google Scholar 

  106. Tallmadge J A, in “Powder Metallurgy Processing: New Techniques and Analyses”, ed. Kuhn H A and Lawley A, Academic, N.Y., 1978, 48 1–32.

    Google Scholar 

  107. Dunkley J J, Wire Industry, 1978, 48, 365–371.

    Google Scholar 

  108. Vanstone R H, Rizzo F J and Radavich J F, as ref. 62a, 260–272.

    Google Scholar 

  109. Anand A, Kaufman A J and Grant N J, as ref. 62a, 273–285.

    Google Scholar 

  110. Champagne B and Angers R, (a) Internat. J. Powd. Met. and Powd. Technol., 1980, 16, 259–67; (b) as ref 24, 83–104; (c) Powd. Met. Internat., 1984, 16 125–8.

    Google Scholar 

  111. Roberts P R and Loewenstein P, as ref. 52, 21–35.

    Google Scholar 

  112. Mehrotra S P and Khedkar P Y, Trans. Ind. Inst. Met., 1980, 33, 361–6.

    Google Scholar 

  113. Rao K P and Mehrotra S P, as ref. 24, 113–130.

    Google Scholar 

  114. Neubing H C, Powder Met. Internat. 1981, 13 74–78.

    Google Scholar 

  115. Tien J K and Howson T E, as ref. 6a, 155–187.

    Google Scholar 

  116. Patterson R J, Ledwith D L and Dwyer J C, in “Processing of Metal and Ceramic Powders”, ed. German R M and Lay K W, The Met. Soc. of AIME Warrendale, Pa., 1982, 33–47.

    Google Scholar 

  117. Hildeman G J, Lege D J and Vasudevan A K, as ref. 6b, 249–76.

    Google Scholar 

  118. Uygur E M, Metal Powd. Rep., 1982, 37, 229–238.

    Google Scholar 

  119. Hugo P E and German R M, Internat. J. Powd. Met. and Powd. Technol., 1982, 18 301–311; as ref. 116, 49–64.

    Google Scholar 

  120. Nagarjuna N, Mukherjee A and Mukunda P G, Internat. J. Powd. Met. and Powd. Technol., 1983, 19, 91–96.

    Google Scholar 

  121. Tsipunov, Temovoi Y F, Kuratchenko S B and Kuimova O M, Sov. Powd. Met. Met. Ceramics, 1983, 22, 788–793.

    Google Scholar 

  122. Koria S C and Lange K W, Ironmaking and Steelmaking, 1983, 10, 160–8.

    Google Scholar 

  123. Meschter P J, O’Neal J E and Lederich R J, in “Aluminium-Lithium Alloys II”, ed. Starke E A and Sanders T H, The Met. Soc. of AIME, Warrendale, Pa., 1984, 419–432.

    Google Scholar 

  124. Brooks R G, Leatham A G and Moore C. in “Powder Metallurgy Super-alloys”: Aerospace Materials for the 1980’s, Vol. 2, Metal Pcwder Report, Shrewsbury, 1980.

    Google Scholar 

  125. Dunstan G R et al, Progr. in Powder Met., 1981, 37, 23–38.

    Google Scholar 

  126. Klar E and Fesko J W, ibid., 47–66.

    Google Scholar 

  127. Voss D P, in “Modem Developments in Powder Metallurgy”, Vol. 13, ed. Hausner H H, MPIF/APMI, Princeton, N.J., 1981, 467–481.

    Google Scholar 

  128. Anon., Metal Powder Report, 1983, 38 563–6.

    Google Scholar 

  129. Kim M H, Thesis Ph D, Sheffield, 1982, guoted by Jones H in “Rapidly Solidified Metastable Materials”, ed. Kear B H and Glessen B C, Elsevier North-Holland, New York, 1984, 303–315.

    Google Scholar 

  130. Walton W H and Prewett W C, Proc. Phys. Soc. 1949, 62 341–350.

    Article  ADS  Google Scholar 

  131. Fraser R P and Eisenklam E P, Trans. Inst. Chem. Eng., 1956, 34, 294–319.

    Google Scholar 

  132. Busk R S, Light Metals, 1960, 23, 197–200.

    Google Scholar 

  133. Dunskii V F and Nikitin N V, J. Eng. Phys., 1965, 9(1), 41–45.

    Article  Google Scholar 

  134. Fraser R P, Dombrowski N and Routley J H, J. Inst. Fuel, 1963, 36, 316–329.

    Google Scholar 

  135. Lubanska H, J. Metals, 1970, 22(2), 45–49.

    Google Scholar 

  136. Bradley D, J. Phys. D: Appl. Phys., 1973, 6, 1724–36, 2267–72.

    Google Scholar 

  137. Mehrotra S P, Powd. Met. Internat., 1981, 31 80–84, 132–5.

    Google Scholar 

  138. Joly P A and Mehrabian R, J. Mater. Sci., 1974, 9, 1446–55.

    Google Scholar 

  139. Kattamis T Z and Mehrabian R, J. Mater. Sci., 1974, 9, 1040–3.

    Google Scholar 

  140. Acrivos C, J. Mater. Sci., 1976, 11, 1159–60, 1752–3.

    Article  ADS  Google Scholar 

  141. Towner R J, Met. Progr., 1958, 73(5), 70–76, 176, 178.

    Google Scholar 

  142. Lyle J P and Cebulak W S, (a) as ref. 25, 231–254, (b) Met. Trans. A, 1975, 6A 685–9, (c) as ref. 55a, 324–333.

    Google Scholar 

  143. Domalavage P K, Grant N J and Gefen Y, Met. Trans. A., 1983, 14A, 1599–1606.

    Article  Google Scholar 

  144. Clyne T W, Ricks R A and Goodhew P J, as ref. 21b, 903–6.

    Google Scholar 

  145. Levi C G and Mehrabian R, Met. Trans. A, 1982, 13A, 13–23.

    Google Scholar 

  146. Kaufman M J and Fraser HL, Met. Trans. A, 1983, 14A, 623–31.

    Article  Google Scholar 

  147. Couper M J (a) as ref. 29, paper 28, (b) Baumann R and Couper M J, to be published.

    Google Scholar 

  148. Wang W and Grant N J, Internat. J. Rapid Solidification, 1984/5,

    Google Scholar 

  149. Takigawa H, Manto H, Kawai N and Homma K, Powder Met., 1981, 24, 196–202.

    Google Scholar 

  150. Kato T, Metal Powder Report, 1983, 38 505–8.

    Google Scholar 

  151. Holiday P R, Cox A R and Patterson R J, as ref. 55a, 246–257.

    Google Scholar 

  152. Cosandey F, Kissinger R D and Tien J K, as ref. 55d, 173–8.

    Google Scholar 

  153. VanStone R H, Rizzo R J and Radavich J F, as ref. 62a, 260–272.

    Google Scholar 

  154. Ranger A A and Nicholls J A, AIAA Journal, 1969, 7 285–290.

    Article  ADS  Google Scholar 

  155. Kurten H et al, Chem.-Ing.-Tech., 1966, 38, 941–8.

    Google Scholar 

  156. Anon., Metal Powder Report, 1983, 38 513–14.

    Google Scholar 

  157. Broderick T F, Jackson A G, Jones H and Froes F H, Met.Trans. A, November 1985, 16 (11).

    Article  Google Scholar 

  158. Boswell P G and Chadwick G A, Scripta Met., 1977, 11, 459–465.

    Article  Google Scholar 

  159. Drehman A J and Turnbull D, Scripta Met., 1981, 15, 543–8.

    Article  Google Scholar 

  160. Yamaguchi T and Narita K, (a) IEEE Trans. Magnetics, Vol. MAG-13, No. 5, Sept. 1977, 1621–3; (b) Appl. Phys. Lett., 1978, 33, 468–470.

    Google Scholar 

  161. Safai S and Herman H, as ref. 1, 183–214.

    Google Scholar 

  162. Munawar Chaijdri M and Hutchings I M, J. Mater. Sci. Lett., 1984, 3 79–82.

    Article  Google Scholar 

  163. Walter J L and Berkowitz A E, Mater. Sci. Eng., 1984, 67 169–177.

    Article  Google Scholar 

  164. Berkowitz A E, Livingston J D and Walter J L, J. Appl. Phys., 1984, 55 2106–8.

    Article  ADS  Google Scholar 

  165. Paton N E, Bampton C C and Ghosh A K, in Proc. ICSMA6, Vol. 2, ed. Gifkins R C, Pergamon, N.Y., 1983, 713–719.

    Google Scholar 

  166. Thursfield Get al, (a) Fizika, 1970, 2 Suppl. 2, paper 19, (b) J. Mater. Sci., 1974, 9, 1644–60.

    Article  Google Scholar 

  167. Dickson J, Okazaki K and Sanders T H, U.S. Pat. 4389258, 21st June 1983.

    Google Scholar 

  168. Skinner D J and Okazaki K, Scripta Met., 1984, 18, 905–9.

    Article  Google Scholar 

  169. Sheppard T and Chare P J M, Powder Met., 1972, 15, 17–41.

    Google Scholar 

  170. Chare P J M and Sheppard T, (a) Powder Met., 1973, 16 437–58, (b) Internat. J. Powd. Met. and Powd. Technol., 1974, 10, 203–215.

    Google Scholar 

  171. Sheppard T, McShane H B, Zaidi M A and Tan G H, J. Mech. Work.Technol. 1983, 8, 43–70.

    Google Scholar 

  172. Sheppard T and Greasley, Powder Met., 1978, 21, 155–162.

    Google Scholar 

  173. Savage S J and Jones H, as ref. 37b, 159–162.

    Google Scholar 

  174. Grant N J, Proc. 3rd. Nordic High Temperature Symposium, Vol. 1, ed. Rasmussen J G, Polyteknisch Forlag, 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Jones, H. (1986). Production and Characterization of Rapidly-Solidified Particulates. In: Sahm, P.R., Jones, H., Adam, C.M. (eds) Science and Technology of the Undercooled Melt. Nato Asi Series, vol 114. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4456-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4456-5_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8483-3

  • Online ISBN: 978-94-009-4456-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics