Skip to main content

Psychopharmacological and Neurobiological Aspects of the Energetics of Information Processing

  • Chapter
Energetics and Human Information Processing

Part of the book series: NATO ASI Series ((ASID,volume 31))

Abstract

Contemporary neurochemical pathology has established that certain neurological conditions such as Parkinson’s disease, Huntingdon’s chorea, senile dementia of the Alzheimer type (SDAT) (see Rossor, 1981) and perhaps even Korsakoff’s syndrome (Mair & McEntee, 1983) are accompanied by changes in certain neurotransmitter systems of subcortical origin which innervate forebrain regions, including neocortex, hippocampus and the basal ganglia. These neurotransmitter systems include not only the major monoaminergic transmitter projections such as the coeruleo-cortical noradrenergic (NA) pathway, the mesotelencephalic dopamine (DA) projection, and the ascending 5-HT pathways from the raphe nuclei, but also those of the substituted nomoamine, acetylcholine (ACh), recently characterised as arising from the nucleus basalis of Meynert in the basal forebrain, which provides the neocortex with the bulk of its extrinsic cholinergic projection, and from the medial septum, innervating the hippocampus (see Figure 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amaral D G & Sinnamon H M (1977). The locus coeuruleus: neurobiology of a central noradrenergic nucleus. Progress in Neurobiology, 9, 147–196.

    Article  PubMed  Google Scholar 

  • Anisman H, Kokkindis L & Sklar L S (1981). Contribution of neurochemical change to stress-induced behavioural deficits. In S. J. Cooper (Ed), Theory in Psychopharmacology, Vol 1. pp 65–102. London: Academic Press.

    Google Scholar 

  • Aston-Jones G & Bloom F E (1981). Activity of norepinephrine containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-wake cycle. Journal of Neuroscience, 1, 876–886.

    PubMed  Google Scholar 

  • Azmitia E C (1978). The serotonin-producing neurons of the midbrain median and dorsal raphe nuclei. In L L Iversen, S D Iversen & S H Snyder (Eds), Handbook of Psychopharmacology, Vol 9. New York: Plenum Press.

    Google Scholar 

  • Bannon M J & Roth R H (1983). Pharmacology of mesocortical dopamine. Pharmacological Reviews, 35, 53–67.

    PubMed  Google Scholar 

  • Bartus R F T (1980). Cholinergic effects on cognition and memory in animals. In L W Poon (Ed), Aging in the 1980s: Psychological issues. American Psychological Association, Washington.

    Google Scholar 

  • Bloom F (1979). Is there a neurotransmitter code in the brain? In P Simon (Ed), Neurotransmitters. Advances in Pharmacology and Therapeutics, Vol 1. Oxford and New York: Pergamon Press.

    Google Scholar 

  • Bloxham C A, Mindel T A & Frith C D (1984). Initiation and execution of predictable and unpredictable movements in Parkinson’s disease. Brain, 107, 371–384.

    Article  PubMed  Google Scholar 

  • Broadbent D E (1971). Decision and Stress. London: Academic Press.

    Google Scholar 

  • Carli M, Evenden J & Robbins T W (1985). Depletion of unilateral striatal dopamine impairs initiation of contralateral actions and not sensory attention. Nature, 313, 679–682.

    Article  PubMed  Google Scholar 

  • Carli M, Robbins T W, Evenden J & Everitt B J (1983). Effects of lesions to ascending noradrenergic neurons on performance of a 5-choice serial reaction task in rats: implications for theories of dorsal noradrenergic function based on selective attention and arousal. Behavioural Brain Research, 9, 361–380.

    Article  PubMed  Google Scholar 

  • Cole B J & Robbins T W (1985a). Dissociable effects of cortical and hypothalamic noradrenaline on the acquisition, performance and extinction of aversive conditioning. Manuscript submitted for publication.

    Google Scholar 

  • Cole B J & Robbins T W (1985b). Effects of d-amphetamine in a five choice serial reaction task in DNAB-lesioned and sham control rats. Unpublished raw data.

    Google Scholar 

  • Cole B J, Robbins T W, Jones G H, Dooley D J & Everitt B J (1985). Lesions of the dorsal noradrenergic bundle simultaneously enhance and reduce responsibity to novelty in a food neophabia test. Manuscript submitted for publication.

    Google Scholar 

  • Deutsch J A (1983). The cholinergic synapse and the site of memory. In J A Deutsch (Ed), The Physiological Basis of Memory. Vol 2. London: Academic Press.

    Google Scholar 

  • Dews P B (1958). Studies on behaviour IV. Stimulant actions of methamphetamine. Journal of Pharmacology and Experimental Therapeutics. 122, 137–147.

    PubMed  Google Scholar 

  • Drachman D R & Sahakian B J (1979). The effects of cholinergic agents on human learning and memory. In A Barbeau, J Growdon & R J Wurtman, Nutrition and the Brain, Vol 5. New York: Raven Press.

    Google Scholar 

  • Duffy E (1962). Activation and Behaviour. London: Wiley.

    Google Scholar 

  • Evenden J & Robbins T W (1985). Effects of unilateral 6-hydroxydopamine lesions of the caudate-putamen on skilled forepaw use in the rat. Behavioural Brain Research, 14, 61–68.

    Article  Google Scholar 

  • Everitt B J, Robbins T W, Gaskin M & Fray P J (1983). The effects of lesions to ascending noradrenergic neurons on discrimination learning and performance in the rat. Neuroscience, 10, 397–410.

    Article  PubMed  Google Scholar 

  • Eysenck M W (1982). Attention and Arousal. Berlin: Springer-Verlag.

    Google Scholar 

  • Glick S D & Jarvik M (1969). Amphetamine, scopolamine and chlorpromazine interactions on delayed matching performance in monkeys. Psychopharmacologia, 16, 147–155.

    Article  PubMed  Google Scholar 

  • Gray J (1982). The Neuropsychology of Anxiety. Oxford: Oxford University Press.

    Google Scholar 

  • Hebb D O (1955). Drives and CNS (conceptual nervous system). Psychological review, 62, 243–254.

    Article  PubMed  Google Scholar 

  • Hockey G R J & Hamilton P (1983). The cognitive patterning of stress states. In G R J Hockey (Ed), Stress and Fatigue in Human Performance. pp. 331–362. Chichester: Wiley,

    Google Scholar 

  • Hull C L (1949). Stimulus intensity dynamism (V) and stimulus generalisation. Psychological Review, 56, 67–76.

    Article  PubMed  Google Scholar 

  • Iversen S D (1983). Where in the brain do benzodiazepines act? In M Trimble (Ed), Benzodiazepines Divided. Chichester: Wiley,

    Google Scholar 

  • Jacobs B L (1984). Single unit activity of brain monoaminergic neurons in freely moving animals: a brief review. In R Bandler (Ed), Modulation of Sensorimotor Activity during Alterations in Behavioural States. New York: Liss.

    Google Scholar 

  • Koek W & Slangen J (1984). Effects of d-amphetamine and morphine on delayed discrimination: signal detection analysis and assessment of response repetition in the performance deficits. Psychopharmacology. 83, 346–350.

    Article  PubMed  Google Scholar 

  • Kopelman M D (1985). Multiple memory deficits in Alzheimer-type dementia; implications for pharmacotherapy. Psychological Medicine. 15, 527–541.

    Article  PubMed  Google Scholar 

  • Krnjevic K & Phillis J W (1963). Acetyle choline sensitive cells in the cerebral cortex. Journal of Physiology, 166, 296–327.

    PubMed  Google Scholar 

  • Lacey J (1967). Somatic response patterning and stress; some revisions activation theory. In M H Appley and H Trumbell (Eds), Psychological Stress. New York: Appleton-Century-Crofts.

    Google Scholar 

  • Lees A J & Smith E (1983). Cognitive deficits in the early stages of Parkinson’s disease. Brain, 106, 257–270.

    Article  PubMed  Google Scholar 

  • Lyon M & Robbins T W (1975). The action of central nervous system stimulant drugs: a general theory concerning amphetamine effects. In W Essman & L Valzelli (Eds), Current Developments in Psychopharmacology, Vol 2. New York: Spectrum.

    Google Scholar 

  • Mair R G & McEntee W J (1983). Korsakoff’s psychosis: noradrenergic systems and cognitive improvement. Behavioural Brain Research, 9, 1–32.

    Article  PubMed  Google Scholar 

  • Mandler G (1975). Mind and Emotion. New York: Wiley.

    Google Scholar 

  • Marczynski T J (1978). Neurochemical mechanisms in the genesis of slow potentials: a review and some clinical implications. In D A Otto (Ed), Multi-disciplinary perspectives in event-related brain potential research. US Government Printing Office, Washington.

    Google Scholar 

  • Marshall J F & Teitelbaum P (1977). The neuropsychology of motivated behaviour. In L L Iversen, S D Iversen & S H Snyder (Eds), Handbook of Psychopharmacology, Vol 7. New York: Plenum Press.

    Google Scholar 

  • Mason S T & Iversen S D (1979). Theories of dorsal bundle extinction effect. Brain Research Reviews, 1, 107–137.

    Article  Google Scholar 

  • Mesulam M M & Mufson E J (1984). Neural inputs into the nucleus basalis of the substantia innominata (Ch4) in the rhesus monkey. Brain 107, 253–274.

    Article  PubMed  Google Scholar 

  • Mesulam M M, Mufson E J, Levey A I & Wainer B H (1983). Cholinergic innerveaion of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata) and hypothalamus in the rhesus monkey. Journal of Comparative Neurology, 214, 170–197.

    Article  PubMed  Google Scholar 

  • Morrison J H & Magistretti P J (1983). Monoamines and peptides in cerebral cortex. Trends in Neuroscience, 6, 146–151.

    Article  Google Scholar 

  • Nauta W J H & Domesick V B (1984). Afferent and efferent relationships of the basal ganglia. In D Evered & M O’Conner (Eds), Functions of the Basal Ganglia. London: Pitman.

    Google Scholar 

  • Perry E, Curtis M, Dick D J, Candy J M, Atack J R, Bloxham C A, Blessed G, Fairbairn A, Tomlinson B E & Perry R H (1985). Cholinergic correlates of cognitive impairment in Parkinson’s disease: comparisons with Alzheimer’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 48, 413–421.

    Article  Google Scholar 

  • Rafal R D, Posner M I, Walker J A & Friedrich F J (1984). Cognition and the basal ganglia. Brain, 107, 1083–1094.

    Article  PubMed  Google Scholar 

  • Robbins T W (1981). Behavioural determinants of drug action: rate-dependency revisited. In Cooper (Ed), Theory in Psychopharmacology. Vol 1. London: Academic Press.

    Google Scholar 

  • Robbins T W (1984). Cortical noradrenaline, attention and arousal. Psychological Medicine, 14, 13–21.

    Article  PubMed  Google Scholar 

  • Robbins T W & Everitt B J (1982). Functional studies of the central catecholamines. International Review of Neurobiology, 23, 303–365.

    Article  PubMed  Google Scholar 

  • Robbins T W & Sahakian B J (1983). Behavioural effects of stimulant drugs: clinical and neuropsychological implications. In I Creese (Ed), Stimulants: Neurochemical, Behavioural and Clinical Perspectives. New York: Raven Press.

    Google Scholar 

  • Robbins T W, Everitt B J, Fray P J, Gaskin M, Carli M & de la Riva C. (1982). The roles of the central catecholamines in attention and learning. In M Y Spiegelstein and A Levy (Eds), Behavioural Models and the Analysis of Drug Action. Amsterdam: Elsevier.

    Google Scholar 

  • Robbins T W, Everitt B J, Mohammed A & Archer T (1985). Functional hypotheses of the ceruleo-cortical noradrenergic projection: a review of recent experimentation and theory. Physiological Psychology. In press.

    Google Scholar 

  • Roberts DCS, Price M T C & Fibiger H C (1976). The dorsal tegmental noradrenergic projection: an analysis of its role in maze-learning. Journal of Comparative and Physiological Psychology, 90, 363–372.

    Article  PubMed  Google Scholar 

  • Rossor M N (1981). Parkinson’s disease and Alzheimer’s disease as disorders of the isodendritic core. British Medical Journal, 283, 1588–1590.

    Article  PubMed  Google Scholar 

  • Segal M & Bloom F E (1976). The action of norepinephrine in the rat hippocampus IV. The effects of locus coeruleus stimulation on evoked hippocampal activity. Brain Research, 107, 513–525.

    Article  PubMed  Google Scholar 

  • Stanes M D, Brown C P & Singer G (1976). Effect of physostigmine on Y-maze retention in the rat. Psychopharmacologia, 46, 269–276.

    Article  PubMed  Google Scholar 

  • Stone T W (1972). Cholinergic mechanisms in the rat somatosensory cortex. Journal of Physiology, 225, 485–499.

    PubMed  Google Scholar 

  • Timsit-Berthier M, Mantanus H, Ansseau M, Doumont A & Legros J J (1983). Methodological problems raised by contingent negative variations interpretation in psychopathological conditions. Advances in Biological Psychiatry, 13, 80–92.

    Google Scholar 

  • Ungerstedt U (1971). Striatal dopamine release after amphetamine or nerve degeneration revealed by rotational behaviour. Acta Physiologica Scandinavica Supplementum, 367, 49–68.

    PubMed  Google Scholar 

  • Warburton D M & Brown K (1972). The facilitation of discrimination performance by physostigmine sulphate. Psychopharmacologia, 27, 275–284.

    Article  PubMed  Google Scholar 

  • Watabe K, Nakai K & Kasamatsu T (1982). Visual afferents to norepinephrine-containing neurons in cat locuscoeruleus. Experimental Brain Research, 48, 66–80.

    Article  Google Scholar 

  • Wesnes K & Warburton D M (1983). Stress and drugs. In G R J Hockey (Ed), Stress and Fatigue in Human Performance. Chichester: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Robbins, T.W. (1986). Psychopharmacological and Neurobiological Aspects of the Energetics of Information Processing. In: Hockey, G.R.J., Gaillard, A.W.K., Coles, M.G.H. (eds) Energetics and Human Information Processing. NATO ASI Series, vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4448-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4448-0_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8479-6

  • Online ISBN: 978-94-009-4448-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics