The role of organic matter in the introduction of biofertilizers and biocontrol agents to soils

  • Y. Hadar
Part of the Developments in Plant and Soil Sciences book series (DPSS, volume 25)


Various groups of soil microorganisms have a potential use in agriculture. These groups include the symbiotic nitrogen-fixing Rhizobia, free living bacteria such as Azotobacter spp. and Azospirillum spp., vesicular-arbuscular and ecto-mycorrhizal fungi, and biocontrol agents such as Trichoderma spp. . Together, these organisms may be able to replace mineral fertilizers and chemical pesticides, thus lowering costs and reducing pollution and environmental hazards.


Biological Control Mycorrhizal Fungus Rice Straw Wheat Bran Biocontrol Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abd-El Moity T.H. and Shatla M.N. 1981 Biological control of white rot disease Sclerotium cepivorum of onion by Trichoderma harzianum. Phytopathol. Zeit. 100, 29–35.CrossRefGoogle Scholar
  2. 2.
    Akhtar C.M. 1977 Biological control of some plant diseases laking genetic resistance of the host crops in Pakistan. Ann. N.Y. Acad. Sci. 287, 45–56.CrossRefGoogle Scholar
  3. 3.
    Alexander M. 1971 Microbial Ecology. John Wiley, New York.Google Scholar
  4. 4.
    Backman P.A. and Rodriguez-Kabana R. 1975 A system for the growth and delivery of biological control agnets to the soil. Phytopathology 65, 819–821.CrossRefGoogle Scholar
  5. 5.
    Broadbent P. and Baker K.F. 1975 Soils suppressive to Phytophthora root rot in Eastern Australia, pp. 152–157 In Biology and Control of Soil-Borne Plant Pathogens. Ed. G.W. Bruehl Ame. Phytopath. Soc. St. Paul, Minnesota.Google Scholar
  6. 6.
    Brown M.E. 1974 Seed and root bacterization. Annu. Rev. Phytopath. 14, 181–197.Google Scholar
  7. 7.
    Brown M.E. 1976 Microbial manipulation and plant performance, pp. 37–53 In Microbiology in Agriculture, Fisheries and Food. Eds. F.A. Skinner and J.G. Carr. Academic Press, London.Google Scholar
  8. 8.
    Burton J.C. 1982 Modern concept in legume inoculation pp. 105–114. In Biological Nitrogen Fixation Technology for Tropical Agriculture. Eds. P.H. Graham and S.C Harris. Centero Internacional de Agricultura Tropical.Google Scholar
  9. 9.
    Chet I. and Baker R. 1981 Isolation and biocontrol potential to Trichoderma hamatum from soil naturally suppressive of Rhizoctonia solani. Phytopathology 71, 286–290.CrossRefGoogle Scholar
  10. 10.
    Cook R.J. and Baker K.F. 1983 The nature and practice of biological control of plant pathogens. The Ame. Phytopath. Soc. St. Paul, Minnesota.Google Scholar
  11. 11.
    Corby H.D.L. 1976 A method of making a pure culture, peat type, legume inoculant, using a substitute for peat. pp. 169–173 In Symbiotic nitrogen fixation in plants Ed. P.S. Nutman Cambridge University Press, Cambridge.Google Scholar
  12. 12.
    Crawford S.L. and Berryhill D.L. 1983 Survival of Rhizobium phaseoli in coal based legume inoculants applied to seeds. Appl. Environ.Microbiol. 45, 703–705.Google Scholar
  13. 13.
    Date R.A. and Roughley R.J. 1977 Preparation of legume seed inoculants. 243–276 In A treatise on Dinitrogen Fixation IV, Agronomy and Ecology. Eds. R.W.F. Hardy and A.H. Gibson. Wiley New York.Google Scholar
  14. 14.
    Dart P.J. Roughley R.J. and Chandler M.R. 1969 Peat culture of Rhizobium trifolii an examination by electron microscopy J. Appl. Bacteriol. 32 352–357.Google Scholar
  15. 15.
    Davet P., Artigues M. and Martin C. 1981 Production en conditions non-aseptiques d’inoculum de Trichoderma harzianum pour des essais de lutte biologique. Agronomie 1, 933–936.CrossRefGoogle Scholar
  16. 16.
    Elad Y., Chet I. and Henis Y. 1982 Degradation of plant pathogenic fungi by Trichoderma harzianum Can. J. Microbiol. 28, 719–725.CrossRefGoogle Scholar
  17. 17.
    Elad Y., Chet I. and Katan J. 1980 Trichoderma harzianum: A biocontrol agent effective against Sclerotium rolfsii and Rhizoctonia solani. Phytopathology 70, 119–121.CrossRefGoogle Scholar
  18. 18.
    Elad Y., Hadar Y., Hadar E., Chet I. and Henis Y. 1981 Biologial control of Rhizoctonia solani by Trichoderma harzianum in carnation, Plant Disease 65, 675–677.CrossRefGoogle Scholar
  19. 19.
    Faizah A.W., Broughton W.J. and John C.K. 1980 Rhizobia in tropical legumes X. growth in coir dust soil compost. Soil Biol. Biochem. 12, 211–218.CrossRefGoogle Scholar
  20. 20.
    Garrett S.D. 1956 Biology of root infecting fungi. Cambridge Univ. Press, London.Google Scholar
  21. 21.
    Guttay A.J.R. 1983 The interaction of fertilizers and vesicular arbuscular mycorrhizae in composted plant residues. J. Am. Soc. Hortic. Sci. 108, 222–224.Google Scholar
  22. 22.
    Guttay A.J.R. 1982 The growth of three woody plant species and the development of their mycorrhizae in three different plant composts. J. Am. Soc. Hortic. Sci. 107, 324–327.Google Scholar
  23. 23.
    Hadar Y., Chet I., and Henis Y. 1978 Biological control of Rhizoctonia solani damping off with wheat bran culture of Trichoderma harzianum. Phytopathology 69, 64–68.CrossRefGoogle Scholar
  24. 24.
    Harvey A.E., Jurgensen M.F. and Larsen M.J. 1981 Organic reserves: Importance to ectomycorrhizae in forest soils. Forest Sci. 27, 442–445.Google Scholar
  25. 25.
    Hattingh M.J. 1975 Inoculation of Brazilian sour orange seed with an endomycorrhizal fungus. Phytopathology 65, 1013–1016.CrossRefGoogle Scholar
  26. 26.
    Hayman D.S. 1983 The physiology of vesicular-arbuscular endomycorrhizal symbiosis. Can. J. Bot. 61, 944–963.CrossRefGoogle Scholar
  27. 27.
    Hayman D.S. 1980 Mycorrhiza and crop production. Nature London 287, 487–488.Google Scholar
  28. 28.
    Hepper C.M. and Warner A. 1983 Role of organic matter in growth of a vesicular-arbuscular mycorrhizal fungus in soil. Trans. Br. Mycol. Soc. 81, 155–156.CrossRefGoogle Scholar
  29. 29.
    Iyer S.G. 1980 Sorgum-sudan green manure; its effect on nursery stock. Plant and Soil 54, 151–162.CrossRefGoogle Scholar
  30. 30.
    Kapulnik Y., Sarig S., Nur I., Okon Y., Kigel J. and Henis Y. 1981 Yield increases in summer cereal crops in Israeli field inoculated with Azospirillum. Expl. Agric. 17, 179–187.CrossRefGoogle Scholar
  31. 31.
    Koske R.E., Sutton J.C. and Sheppard B.R. 1975 Ecology of Endogone in Lake Huron sand dunes. Can. J. Bot. 53, 87–93.CrossRefGoogle Scholar
  32. 32.
    Kremer R.J. and Reterson H.L. 1983 Effect of carrier and temperature on survival of Rhizobium spp. in legume inocula: Development of an improved type of inoculant. Appl. Env. Microb. 45, 1790–1794.Google Scholar
  33. 33.
    Kundu B.S. and Gaur A.C. 1980 Establishment of nitrogen fixing and phosphate-solubilizing bacteria in rhizosphere and their effect on yield and nutrient uptake of wheat crop. Plant and Soil 57, 223–230.CrossRefGoogle Scholar
  34. 34.
    Lewis J.A. and Papavizas G.C. 1980 Integrated control of Rhizoctonia fruit rot of cucumber. Phytopathology 70, 85–89.CrossRefGoogle Scholar
  35. 35.
    Lewis J.A. and Papavizas G.C 1983 Production of chlamidospores and conidia by Trichoderma spp. in liquid and solid growth media. Soil Biol. Biochem. 15, 351–357.CrossRefGoogle Scholar
  36. 36.
    Lynch J.M. 1983 Soil Biotechnology. Blackwell Scientific Publications. OxfordGoogle Scholar
  37. 37.
    Lynch J.M. and Elliott L.F. 1983 Minimizing the potential phytotoxicity of Oxford wheat straw by microbial degradation. Soil Biol. Biochem. 15, 221–222.CrossRefGoogle Scholar
  38. 38.
    Malajczuk N. 1979 Biological suppression of Phytophthora cinnamomi in eucalyptus and avocado in Australia, pp. 635–652 In Soil-Borne Plant Pathogens. Eds. B. Schippers and W. Gams. Academic Press, London.Google Scholar
  39. 39.
    Maronek D.M. 1981 Mycorrhizal fungi and their importance in horticultural crops production. Hortic. Rev. 3, 172–213.Google Scholar
  40. 40.
    Marx D.H. and Kenny D.S. 1982 Production of ectomycorrhizal fungus inoculum, pp. 131–146 In Methods and Principles of Mycorrhizal Research. Ed N.C. Schenck The Ame. Phytopathol. Soc, St. Paul. Minnesota.Google Scholar
  41. 41.
    Marx D.H., Ruehle J.L., Kenney D.S. Cordell C.E., Riffle J.W., Molina R.J., Pawuk W.H., Navratil S., Tinus R.W., and Goodwin R.W. 1982 Commercial vegetative inoculum of Pisolithus tinctorius and inoculation techniques for development of ectomycorrhizae on container grown tree seedling. Forest Sci. 28, 373–400.Google Scholar
  42. 42.
    Marx D.H. and Zak B. 1965 Effect of pH on mycorrhizal formation of slash pine in aseptic culture. Forest Sci. 11, 66–75.Google Scholar
  43. 43.
    Mendez-Castro F.A. and Alexander M. 1983 Method for establishing abacterial inoculum on corn roots. Appl. Environ. Microbiol. 45, 248–254.Google Scholar
  44. 44.
    Menge J.A. 1983 Utilization of vesicular-arbuscular mycorrhizal fungi in agriculture. Can. J. Bot. 61, 1015–1024.CrossRefGoogle Scholar
  45. 45.
    Menge J.A. and Timmer L.W. 1982 Procedures for inoculation of plants with vesicular-arbuscular mycorrhizae in laboratory, greenhouse and field, pp. 59–76. In Methods and Priciples of Mycorrhizal Research. Ed. N.C. Schenk. The Ame. Phytopath. Soc, St. Paul. Minnesota.Google Scholar
  46. 46.
    Mishustin E.N. 1970 The importance of non symbiotic nitrogen fixing micro-organisms in agriculture. Plant and Soil 32, 545–554.CrossRefGoogle Scholar
  47. 47.
    Moser M. 1958 Die Kunstriche Mykorrhizaimpfung an forstpflanzen. 1. Erfahrungen bei der Reinkultur von Mykorrhizapilzen. Forstw. Cbl. 77, 32–40.CrossRefGoogle Scholar
  48. 48.
    Mosse B. Stribley D.P. and Le Tcacon F. 1981 Ecology of mycorrhizae and mycorrhizal fungi. Adv. Microbiol. Ecol. 5, 137–210.Google Scholar
  49. 49.
    Nicolson T.H. 1959 Mycorrhiza in the Gramineae vesicular arbuscular endophytes, with special reference to the external phase. Trans. Br. Mycol. Soc 42, 421–438.CrossRefGoogle Scholar
  50. 50.
    Ocampo J.A., Barea J.M. and Montoyae E. 1975 Interaction between Azotobacter and phosphobacteria and their establishment in the rhizosphere as affected by soil fertility. Can. J. Microbiol. 21, 1160–1165.CrossRefGoogle Scholar
  51. 51.
    Okon Y. and Hardy R.W. 1983 Developments in basic and applied biological nitrogen fixation, pp. 5–54. In Plant Physiology Vol. VIII Nitrogen Metabolism. Eds. F.C Steward and R.G.S. Bidwell Academic Press N.Y.Google Scholar
  52. 52.
    Paczkowski N.W. Berryhill D.L. 1979 Survival of Rhizobium phaseoli in coal based legume inoculants. Appl. Environ. Microbiol. 38, 612–615.Google Scholar
  53. 53.
    Papavizas G.C. and Lewis J.A. 1981 Introduction and augmentation of microbial antagonists for the control of soilborne plant pathogens, pp. 305–322. In Biological Control in Crop Production. Ed. G.C. Papavizas. Allanheld, Osmum, London.Google Scholar
  54. 54.
    Rao U.R. 1978 Effect of carbon source on asymbiotic nitrogen fixation in a paddy soil. Soil Biol. Biochem. 10, 319–321.CrossRefGoogle Scholar
  55. 55.
    Roughley R.J., Pulsford D.J. 1982 Production and control of legume inoculants. pp. 193–209. In Nitrogen Fixation in Legumes. Ed. J.M. Vincent Academic Press, Sydney.Google Scholar
  56. 56.
    Roughley R.J. and Vincent J.M. 1967 Growth and survival of Rhizobium spp. in peat culture. J. App. Bacteriol. 30, 362–376.Google Scholar
  57. 57.
    St. John T.V. and Coleman D.C. 1983 The role of mycorrhizae in plant ecology. Can. J. Bot. 61, 1005–1014.CrossRefGoogle Scholar
  58. 58.
    Sivan A., Elad Y. and Chet I. 1984 Biological control of Phythium aphanidermatum by a new isolate of Trichoderma harzianum. Phytopathology 74, 498–501.CrossRefGoogle Scholar
  59. 59.
    Slankis V. 1974 Soil factors influencing formation of mycorrhizae. Annu. Rev. Phytopath. 437–457.Google Scholar
  60. 60.
    Strijdom B.W. and Deschodt C.C. 1976 Carriers of rhizobia and the effects of prior treatment on survival of rhizobia. pp. 151–168. In Symbiotic Nitrogen Fixation in Plants. Ed. P.S. Nutman. Cambridge University Press, CambridgeGoogle Scholar
  61. 61.
    Subba Rao N.S. 1982 Biofertilizers. pp. 219–242. In Advances in Agricultural Microbiology. Ed. N.S. Subba Rao Butterworth Scientific, London.Google Scholar
  62. 62.
    Suslow T.V. 1982 Role of root colonizing bacteria in plant growth, pp. 187–223. In Phytopathogenic Procaryotes. Ed. M.S. Mount and G.H. Lacy Academic Press. New York.Google Scholar
  63. 63.
    Suslow T.V. and Schroth M.N. 1982 Rhizobacteria of sugar beets: Effects of seed application and root colonization on yield. Phytopathology 72, 199–206.CrossRefGoogle Scholar
  64. 64.
    Tan K.H. and Nopanornbodi V. 1979 Fulvic acid and the growth of the ectomycorrhizal fungus Pisolithus tinctorious. Soil Biol. Biochem. 11, 651–653.CrossRefGoogle Scholar
  65. 65.
    Vance C.P. 1983 Rhizobium infection and nodulation: a beneficial plant disease. Annu. Rev. Microbiol. 37, 399–424.Google Scholar
  66. 66.
    Van Schreven D.A. 1970 Some factors affecting growth and survival of Rhizobium spp. in soil-peat cultures. Plant and Soil 32, 113–130.CrossRefGoogle Scholar
  67. 67.
    Warner A. Gee P. and Fyson A. 1981 The production of inoculum in nutrient film culture. Rothamsted Report, Part 1, 211.Google Scholar
  68. 68.
    Wells H.O., Bell D.K. and Jaworski C.A. 1972 Efficacy of Trichoderma harzianum as a biocontrol for Sclerotium rolfsii. Phytopathology 62, 442–447.CrossRefGoogle Scholar
  69. 69.
    Yoneyama T., Lee K.K. and Yoshida T. 1977 Decomposition of rice residue in tropical soils IV. The effect of rice straw on nitrogen fixation by heterotrophic bacteria in some Phillippine soils. Soil Sci. Plant Nutr. 23, 287–295.Google Scholar

Copyright information

© Martinus Nijhoff Publishers, Dordrecht 1986

Authors and Affiliations

  • Y. Hadar

There are no affiliations available

Personalised recommendations