Skip to main content

Soil organic matter interactions with trace elements

  • Chapter
The Role of Organic Matter in Modern Agriculture

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 25))

Abstract

The availability of trace elements to plants is governed by a variety of reactions that include complexation with organic and inorganic ligands, ion exchange and adsorption, precipitation and dissolution of solids, and acid-base equilibria (90). A key role is often played by organic matter, both in enhancing availability to plants (65, 66, 113, 114) and in reducing toxicity effects of the free cation (20, 31, 62). Trace metals that would ordinarily convert to insoluble precipitates (as carbonates, sulfides, or hydroxides) at the pH’s found in many soils are undoubtedly maintained in solution through chelation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdou F.M. and El-Nennah M. 1980 Effect of irrigating loamy sand by liquid sewage sludge on its contents of some micronutrients. Plant Soil 561, 53–57.

    Article  Google Scholar 

  2. Abdul-Halim A.L., Evans J.C, Rowlands C.C. and Thomas J.H. 1981 An EPR spectroscopic examination of heavy metals in humic and fulvic acid soil fractions. Geochim. Cosmochim. Acta 45, 481–487.

    Article  CAS  Google Scholar 

  3. Aiken G. R., Thurman E.M. and Malcolm R.L. 1979 Comparison of XAD macroporous resins for the concentration of fulvic acid from aqueous solution. Anal. Chem. 51, 1799–1803.

    Article  CAS  Google Scholar 

  4. Akers H.A. 1983 Multiple hydroxamic acid microbial iron chelators (siderophores) in soils. Soil Sci. 135, 156–159.

    Article  CAS  Google Scholar 

  5. Alexsandrova L.N. 1960 The use of sodium pyrophosphate for isolating free humic substances and their organic-mineral compounds from the soil. Soviet Soil Sci. 1960, 190–197.

    Google Scholar 

  6. Anderson W.B. 1964 Effect of synthetic chelating agents as sources of zinc for calcareous soils. Ph. D. Thesis, Colorado State University Fort Collins.

    Google Scholar 

  7. Ardakani M.S. and Stevenson F.J. 1972 A modified ion-exchange technique for the determination of stability constants of metal-soil organic matter complexes. Soil Sci. Soc. Am. Proc. 36, 884–890.

    Article  CAS  Google Scholar 

  8. Aso S. and Sakai I. 1963 Studies on the physiological effects of humic acid. Part 1. Uptake of humic acid by crop plants and its physiological effects. Soil Sci. Plant Nutrition 99, 85–91.

    Google Scholar 

  9. Baham J., Ball N.B. and Sposito G. 1978 Gel filtration studies of trace metal-fulvic acid solutions extracted from sewage sludges. J. Environ. Qual. 7, 124–127.

    Article  Google Scholar 

  10. Barber S.A., Halstead E.H. and Follett B.F. 1966 Significant mechanisms controlling the movement of manganese and molybdenum to plant roots growing in soil. p. 299–304. In Int. Soil Sci. Soc. (Aberdeen, Scotland) Trans. Comm. II and IV.

    Google Scholar 

  11. Barber S.A., Walker J.M. and Vasey E.H. 1963 Mechanisms for the movement of plant nutrients from the soil and fertilizer to the plant root. J. Agric. Food Chem. 11, 204–207.

    Article  CAS  Google Scholar 

  12. Bar-Ness E. 1985 The effect of Fe, Mn and Zn amended naturally occurring substances on yield and micronutrient uptake by plants. M.S. Thesis. The Hebrew Univ. of Jerusalem.

    Google Scholar 

  13. Bar-Tal A., Bar-Yosef B. and Chen Y. 1986 The effects of various organic chelating agents and pH on zinc transport in soils. Soil Sci. (submitted).

    Google Scholar 

  14. Bhat G.A. and Weber J.H. 1982 Cadmium (II) binding by soil-derived fulvic acid measured by anodic stripping voltammetry. Anal. Chim. Acta 141, 95–103.

    Article  CAS  Google Scholar 

  15. Blaschke H. 1979 Leaching of water-soluble organic substances from coniferous needle litter. Soil Biol. Biochem. 11, 581–584.

    Article  CAS  Google Scholar 

  16. Blaser P., FlĂ¼hler H. and Polomski, J. 1980 Metal binding properties of leaf litter extracts: I. Soil Sci. Soc. Am. J. 44, 709–716.

    Article  CAS  Google Scholar 

  17. Blaser P., Landolt W. and FlĂ¼hler, W. 1980 Metal binding properties of leaf litter extracts: II. Soil Sci. Soc. Am. J. 44, 717–720.

    Article  CAS  Google Scholar 

  18. Blondel D. 1970 Induction of iron chlorosis in sandy soil (Dior) by irrigation waters rich in calcium and magnesium. Agron. Trop., Paris 25, 555–560. (Fr.).

    CAS  Google Scholar 

  19. Bloom P.R. and Mcbride M.B. 1979 Metal ion binding and exchange with hydrogen ions in acid-washed peat. Soil Sci. Soc. Am. J. 43, 687–692.

    Article  CAS  Google Scholar 

  20. Bloom P.R., McBride M.B. and Weaver R.M. 1979 Aluminum organic matter in acid soils: Buffering and solution aluminum activity. Soil Sci. Soc. Am. J. 43, 488–493.

    Article  CAS  Google Scholar 

  21. Boehl J., Jr and Lindsay W.L. 1969 Micronutrients — The fertilizer shoenails-Zinc. Fert. Solns. 13, 6–8, 10, 12.

    Google Scholar 

  22. Boyd S.A., Sommers L.E. and Nelson D.W. 1979 Infrared spectra of sewage sludge fractions: Evidence for an amide metal binding site. Soil Sci. Soc. Am. J. 43, 893–899.

    Article  CAS  Google Scholar 

  23. Boyd S.A., Sommers L.E. and Nelson D.W. 1981 Copper (II) and iron (III) complexation by the carboxylate group of humic acid. Soil Sci. Soc. Am. J. 45, 1241–1242.

    Article  CAS  Google Scholar 

  24. Boyd S.A., Sommers L.E., Nelson D.W. and West D.X. 1981 The mechanism of copper (II) binding by humic acid: An electron spin resonance study of Cu(II)-humic acid complex and some adducts with nitrogen donors. Soil Sci. Soc. Am. J. 45, 745–749.

    Article  CAS  Google Scholar 

  25. Boyd S.A., Sommers L.E., Nelson D.W. and West D.X. 1983 Copper(II) binding by humic acid extracted from sewage sludge: An electron spin resonance study. Soil Sci. Soc. Am. J. 47, 43–46.

    Article  CAS  Google Scholar 

  26. Bresnahan W.T., Grant C.L. and Weber J.H. 1978 Stability constants for the complexation of copper(II) ions with water and soil fulvic acids measured by an ion selective electrode. Anal. Chem. 50, 1675–1679.

    Article  CAS  Google Scholar 

  27. Brezonik P.L., Brauner P.A. and Stumm W. 1976 Trace metal analysis by anodic stripping voltammetry: Effect of sorption by natural and model organic compounds. Water Res. 10, 605–612.

    Article  CAS  Google Scholar 

  28. Bruckert S. and Jacquin F. 1969 Interaction entre la mobilite de plusieurs acides organiques et de divers cations dans un sol a mull et dons un soil a mor. Soil Biol. Biochem. 1, 275–294.

    Article  CAS  Google Scholar 

  29. Buffle J., Greter F-L. and Haerdi W. 1977 Measurement of complexation properties of humic and fulvic acids in natural waters with lead and copper ion-selective electrodes. Anal. Chem. 49, 216–222.

    Article  CAS  Google Scholar 

  30. Bureau R.G., White R.G. and MacGregor J.M. 1960 Uptake of applied iron by soybeans from calcareous soil treated with peat-based humates and synthetic chelates. 7th Intern. Congress Soil Sci. Madison, Wis. 3, 544–553.

    Google Scholar 

  31. Campbell P.G.C., Bissom M., Bouqie R., Tessier A. and Villeneuve J-P. 1983 Speciation of aluminum in acidic freshwaters. Anal. Chem. 55, 2246–2252.

    Article  CAS  Google Scholar 

  32. Cheam V. 1973 Chelation study of copper(II)-fulvic acid system. Can. J. Soil Sci. 53, 377–382.

    Article  CAS  Google Scholar 

  33. Cheam V. and Gamble D.S. 1974 Metal-fulvic acid chelation equilibrium in aqueous NaNO3 solution. Hg(II), Cd(II), and Cu(II) fulvate complexes. Can. J. Soil Sci. 54, 413–417.

    Article  CAS  Google Scholar 

  34. Chen Y. and Barak P. 1983 Iron-enriched peat and lignite as iron fertilizer. Proc. 2nd Intl. Symp. Peat in Agric. pp. 195–202. Bet-Dagan, Israel.

    Google Scholar 

  35. Chen Y., Navrot J. and Barak P. 1982 Remedy of lime-induced chlorosis with iron-enriched muck. J. Plant Nutr. 5, 927–960.

    Article  CAS  Google Scholar 

  36. Chen Y., Steinitz B., Cohen A. and Elber Y. 1982 The effect of various iron-containing fertilizers on growth and propagation of Gladiolius grandiflorus. Scientia Hort. 18, 169–175.

    Article  CAS  Google Scholar 

  37. Chesnin L. 1968 Flavenoid and lignin compounds derived from forest products as micronutrient carriers for plant growth, pp. 411–419. In: Isotopes and radiation in soil organic matter studies. Intern. Atomic Energy Agency, Vienna.

    Google Scholar 

  38. Clark A.L. and Graham E.B. 1968 Zinc diffusion and distribution coefficients in soil as affected by soil texture, zinc concentration and pH. Soil Sci. 105, 409–418.

    Article  Google Scholar 

  39. Clark J.S. and Turner R.C. 1969 An examination of the resin exchange method for the determination of metal-soil organic matter complexes. Soil Sci. 107, 8–11.

    Article  CAS  Google Scholar 

  40. Cline G.R., Powell P.E., Szaniszlo P.J. and Reed C.P.P. 1983 Comparison of the abilities of hydroxamic and other natural organic acids to chelate iron and other ions in soil. Soil Sci. 136, 145–157.

    Article  CAS  Google Scholar 

  41. Cronan C.S., Reiners W.A., Reynolds R.C, Jr and Lang G.E. 1978 Forest floor leaching: Contribution from mineral, organic, and carbonic acids in New Hampshire subalpine forests. Science 200, 309–311.

    Article  CAS  Google Scholar 

  42. Crosser M.L. and Allen H.E. 1977 Determination of complexation capacity of soluble ligands by ion exchange equilibrium. Soil Sci. 123, 176–181.

    Article  CAS  Google Scholar 

  43. Davies M.L, Cheshire M.V. and Graham-Bryce I.J. 1969 Retention of low levels of copper by humic acid. J. Soil Sci. 20, 65–71.

    Article  CAS  Google Scholar 

  44. De Kock P.C and Strmecki E.L. 1954 An investigation into the growth promoting effects of a lignite. Physiol. Plant. 7, 503–512.

    Article  Google Scholar 

  45. De Coninck F. 1980 Major mechanisms in formation of spodic horizons. Geoderma 24, 101–128.

    Article  Google Scholar 

  46. Dowd J.E. and Riggs D.S. 1965 A comparison of estimates of Michaelis-Menten kinetic constants from various linear transformations. J. Biol. Chem. 240, 863–869.

    CAS  Google Scholar 

  47. Dubach P. and Mehta N.C. 1963 The chemistry of soil humic substances. Soils Fertilizers 26, 293–300.

    CAS  Google Scholar 

  48. Ellis B.G., Knezek B.D. and Jacobs L.W. 1983 The movement of micronutrients in soils, pp. 109–122. In Nelson D.W., Elrick D.E. and Tanji K.K. Chemical Mobility and Reactivity in Soil Systems. SSSA Special Publication Number 11, Soil Science Soc. of America, Madison, Wise.

    Google Scholar 

  49. Enis M.T. and Brogan J.C 1961 The availability of copper from copper humic acid complexes. Irish J. Agr. Res. 1, 35–42.

    Google Scholar 

  50. Fitch A. and Stevenson F.J. 1984 Comparisons of models for determining stability constants of metal complexes with humic substances. Soil Sci. Soc. Am. J. 48, 1044–1050.

    Article  CAS  Google Scholar 

  51. Fitch A. and Stevenson F.J. 1983 Stability constants of metal-organic matter complexes: Theoretical aspects and mathematical models, pp. 645–649. In S.S. Augustithis (ed.) The significance of trace elements in solving petrogenetic problems and controversies. Theoprastus Publications S.A., Athens, Greece.

    Google Scholar 

  52. Francis H.J., Rajagopal C.K. and Krishnamoorthy K.K. 1979 Effect of organically complexed iron on the available iron content in soil and uptake by sorghum CSH5 in two different soils at successive growth stages. Mysore J. Agric Sci, 13, 159–164.

    Google Scholar 

  53. Gamble D.S., Schnitzer M. and Hoffman I. 1970 Cu2+-fulvic acid chelation equilibrium in 0.1 M KCl at 25°C. Can. J. Chem. 48, 3197–3204.

    Article  CAS  Google Scholar 

  54. Ghosh K. and Schnitzer M. 1981 Fluorescence excitation spectra and viscosity behavior of a fulvic acid and its copper and iron complexes. Soil Sci. Soc. Am. J. 45, 25–29.

    Article  CAS  Google Scholar 

  55. Goodman B.A. and Cheshire M. V. 1973 Electron paramagnetic resonance evidence that copper is complexed in humic acid by the nitrogen of porphyrin groups. Nature (London) 244, 158–159.

    Article  CAS  Google Scholar 

  56. Goodman B.A. and Cheshire M.V. 1976 The occurrence of copperporphyrin complexes in soil humic acids. J. Soil Sci. 27, 337–347.

    Article  CAS  Google Scholar 

  57. Graustein W.C., Cromack K., Jr and Sollins P. 1977 Calcium oxalate: Occurrence in soils and effect on nutrient andgeochemical cycles. Science 198, 1252–1254.

    Article  CAS  Google Scholar 

  58. Greter F.L., Buffle J. and Haerdi W. 1979 Voltammetry study of humic and fulvic substances. J. Electroanal. Chem. 101, 211–279.

    Article  CAS  Google Scholar 

  59. Griffith S.M., Silver J. and Schnitzer M. 1980 Hydrazine derivatives at Fe3+ sites in humic materials. Geoderma 23, 299–302.

    Article  CAS  Google Scholar 

  60. Guy R.D. and Chakrabarti C.L. 1976 Analytical techniques for speciation of heavy metal ions in the aquatic environment. Chemistry in Canada 28, 26–29.

    CAS  Google Scholar 

  61. Halstead E.H., Barber S.A., Warncke D.I. and Bole J.B. 1968 Supply of Ca, Sr, Mn and Zn to plant roots growing in soil. Soil Sci. Soc. Am. Proc. 32, 69–72.

    Article  CAS  Google Scholar 

  62. Hargrove W.L. and Thomas G.W. 1979 Effect of organic matter on exchangeable aluminum and plant growth in acid soils. ASA Special Publication 40, 151–166. Soil Sci Soc. Am. Inc., Madison, Wis.

    Google Scholar 

  63. Hayes M.H.B. and Swift R.S. 1978 The chemistry of soil organic colloids, pp. 179–230. In D.J. Greenland and R.S. Swift (eds.). The Chemistry of Soil Constituents. Wiley Inter science, Chichester, England.

    Google Scholar 

  64. Hodgson J.F. 1963 Chemistry of the micronutrient elements in soils. Adv. Agron. 15, 119–159.

    Article  Google Scholar 

  65. Hodgson J.F., Geering H.R. and Norvell W.A. 1965 Micronutrient cation complexing in soil solution. I. Soil Sci. Soc. Am. Proc. 29, 665–669.

    Article  CAS  Google Scholar 

  66. Hodgson J.F., Lindsay W.L. and Trierweiler J.F. 1966 Nutrient cation complexing in soil solution: II. Soil Sci. Soc. Am. Proc. 30, 723–726.

    Article  CAS  Google Scholar 

  67. Jalali V.K. and Takkar P.N. 1979 Evaluation of parameter for simultaneous determination of micronutrient cations available to plants from soil. Indian J. Agric. Sci. 49, 622–626.

    CAS  Google Scholar 

  68. Katase T. 1981 Distribution of different forms of p-hydroxybenzoic, p-coumaric and ferulic acids in forest soils. Soil Sci. Plant Nutr. 27, 365–371.

    CAS  Google Scholar 

  69. Kononova M.M. 1966 Soil Organic Matter. Pergamon, New York, 544 p.

    Google Scholar 

  70. Kribeck B., Kaigl J. and Oruzinsky V. 1977 Characterization of di and trivalent metal-humic acid complexes on the basis of their molecular weight distributions. Chem. Geol. 19, 73–81.

    Article  Google Scholar 

  71. Kuchenbuck R. and Jungk A. 1982 A method for determining concentration profiles at the soil-root interface by thin slicing rhizospheric soil. Plant Soil 68, 391–396.

    Article  Google Scholar 

  72. Lakatos B., Korecz L. and Meisel J. 1977 Comparative study of Mossbauer parameters of iron humates and polyuronates. Geoderma 19, 149–157.

    Article  CAS  Google Scholar 

  73. Lakatos B., Tibai T. and Meisel J. 1977 ESR spectra of humic acids and their metal complexes. Geoderma 19, 319–338.

    Article  CAS  Google Scholar 

  74. Langford C.H. and Khan T.R. 1975 Kinetics and equilibrium of binding of Fe3+ by a fulvic acid. Can. J. Chem. 53, 2979–2984.

    Article  CAS  Google Scholar 

  75. Lavy T.L. and Barber S.A. 1964 Movement of molybdenum in the soil and its effect on availability to the plant. Soil Sci. Soc. Am. Proc. 28, 93–97.

    Article  Google Scholar 

  76. Lee Y.S. and Bartlett R.J. 1976 Stimulation of plant growth by humic substances. Soil Sci. Soc. Am. J. 40, 876–879.

    Article  CAS  Google Scholar 

  77. Lewis D.G. and Quirk J.P. 1967 Phosphate diffusion in soil and uptake by plants. III. p31 movement and uptake by plants as indicated by P32 autoradiography. Plant Soil 26, 445–453.

    Article  CAS  Google Scholar 

  78. Lindsay W.L. 1974 Role of chelation in micronutrient availability. In E.W. Carson (ed.): The Plant Root and its Environment, pp. 507–524. University Press of Virginia, Charlottesville.

    Google Scholar 

  79. Lindsay W.L. and Schwab A.P. 1982 The chemistry of iron in soils and its availability to plants. J. Plant Nutr. 5, 821–840.

    Article  CAS  Google Scholar 

  80. Linehan D.J. 1978 The uptake by plants of polymeleic acid: a polycarboxylie acid structurally related to those of soils. Plant and Soil 50, 625–632.

    Article  CAS  Google Scholar 

  81. Linehan D.J. 1978 Humic acid and iron uptake by plants. Plant Soil 50, 663–673.

    Article  CAS  Google Scholar 

  82. Linehan D.J. and Shepherd H. 1979 A comparative study of the effects of natural and synthetic ligands on iron uptake of plants. Plant Soil 52, 281–289.

    Article  CAS  Google Scholar 

  83. Little R.C. 1971 Treatment of iron deficiency, pp. 45–61. In Trace elements in soils and crops. Tech. Bull. 21. Min. Agr., Fisheries and Food. Her Majesty’s Stationery Office, London.

    Google Scholar 

  84. Low P.F. 1962 Effect of quasi-crystalline water on rate processes involved in plant nutrition. Soil Sci. 93, 6–15.

    Article  CAS  Google Scholar 

  85. MacCarthy P. and Mark H.B., Jr 1976 An evaluation of Job’s method of continuous variation as applied to soil organic matter-metal ion interaction. Soil Sci. Soc. Amer. J. 40, 267–276.

    Article  CAS  Google Scholar 

  86. Mann M.S., Takkar T.S., Bansal R.L. and Randhawa N.S. 1978 Micronutrient status of soil and yield of maize and wheat as influenced by micronutrient and farmyard manure application. J. Indian Soc. Soil Sci. 26, 208–214.

    CAS  Google Scholar 

  87. Mantoura R.F.C., Dickson A. and Riley J.P. 1978 The complexation of metals with humic materials in natural waters. Est. Coast. Mar. Sci. 6, 387–408.

    Article  CAS  Google Scholar 

  88. Mantoura R.F.C. and Riley J.P. 1975 The use of gel filtration in the study of metal binding by humic acids and related compounds. Anal. Chim. Acta. 78, 193–200.

    Article  CAS  Google Scholar 

  89. Matsuda K. and Ito S. 1970 Adsorption strength of zinc for soil humus: III. Soil Sci. Plant Nutr. (Tokyo) 16, 1–10.

    CAS  Google Scholar 

  90. Mattigod S.V., Sposito G. and Page A.L. 1981 Factors affecting the solubilities of trace metals in soils. ASA Special Publ. 40, 203-221. Soil Sci. Soc. Am. Inc., Madison, Wis.

    Google Scholar 

  91. McBride M.B. 1978 Transition metal bonding in humic acid: An ESR study. Soil Sci. 126, 200–209.

    Article  CAS  Google Scholar 

  92. Melton J.R., Mahtab S.K. and Swoboda A.R. 1973 Diffusion of zinc in soils as a function of applied zinc, phosphorus, and soil pH. Soil Sci. Soc. Am. Proc. 37, 279–381.

    Google Scholar 

  93. Mengel K. and Kirby E.A. 1982 Principals of Plant Nutrition. International Potash Institute, Bern, Switzerland.

    Google Scholar 

  94. Moghimi A., Tate M.E. and Oades J.M. 1978 Characterization of rhizosphere products including 2-ketogluconic acid. Soil Biol. Biochem. 10, 283–287.

    Article  CAS  Google Scholar 

  95. Mylonas V.A. and McCants C.B. 1980 Effects of humic and fulvic acids on growth of tobacco. I. Root initiation and elongation. Plant Soil 54, 485–490.

    Article  CAS  Google Scholar 

  96. Murphy L.S. and Walsh L.M. 1972 Correction of micronutrient deficiencies with fertilizers, pp. 347–387. In Mortvedt, J.J., Giordano P.M. and Lindsay W.L. (eds.). Micronutrients in Agriculture, Soil Sci. Soc. Am. Inc. Madison, Wis.

    Google Scholar 

  97. Nye P.H. 1966 The measurement and mechanism of ion diffusion in soil. I. The relation between self-diffusion and bulk diffusion. J. Soil Sci. 17, 16–23.

    Article  CAS  Google Scholar 

  98. O’Connor G.A., Lindsay W.L. and Olsen S.R. 1971 Diffusion of iron and iron chelates in soil. Soil Sci. Soc. Am. Proc. 35, 407–410.

    Article  Google Scholar 

  99. Oliver S. and Barber S.A. 1966 Mechanisms for the movement of Mn, Fe, B, Cu, Zn, Al, and Sr from one soil to the surface of soybean roots. Soil Sci. Soc. Am. Proc. 30, 468–470.

    Article  CAS  Google Scholar 

  100. O’Shea T.A. and Mancy K.H. 1976 Characterization of trace metal-organic interactions by anodic-stripping voltammetry. Anal. Chem. 48, 1603–1607.

    Article  Google Scholar 

  101. Parsa A.A. and Wallace A. 1979 Organic solid wastes from urban environment as iron sources for sorghum. Plant Soil 53, 455–461.

    Article  CAS  Google Scholar 

  102. Perdue E.M. and Lytle C.R. 1983 Distribution model for binding of protons and metal ions by humic substances. Environ. Sci. Tech. 17, 654–661.

    Article  CAS  Google Scholar 

  103. Piccolo A. and Stevenson F.J. 1981 Infrared spectra of Cu2+, Pb2+, and Ca2+ complexes of soil humic substances. Geoderma 27, 195–208.

    Article  Google Scholar 

  104. Powell P.E., Szaniszlo P.J., Cline G.R. and Reid C.P.P. 1982 Hydroxamate siderophores in the iron nutrition of plants. J. Plant Nutr. 5, 653–673.

    Article  CAS  Google Scholar 

  105. Rashid M.A. 1971 Role of humic acids of marine origin and their different molecular weights in complexing di-and tri-valent metals. Soil Sci. 1ll, 298–306.

    Article  Google Scholar 

  106. Richardson G. 1967 Iron deficiency in sorghum. The micronutrient manual. Farm Tech. 23, No. 6

    Google Scholar 

  107. Rovira A.D. 1969 Plant root exudates. Bot. Rev. 35, 35–57.

    Article  CAS  Google Scholar 

  108. Ryan D.K. and Weber J.H. 1982 Fluorescence quenching titration for determination of complexing capacities and stability constants of fulvic acid. Anal. Chem. 54, 986–990.

    Article  CAS  Google Scholar 

  109. Saar R.A. and Weber J.H. 1980 Comparison of spectrofluorometry and ion-selective electrode potentiometry for determination of complexes between fulvic acid and heavy-metal ions. Anal. Chem. 52, 2095–2100.

    Article  CAS  Google Scholar 

  110. Saar R.A. and Weber J.H. 1980 Lead(II)-fulvic acid complexes: Conditional stability constants, solubility, and implications for Pb(II) mobility. Environ. Sci. Tech. 14, 877–880.

    Article  CAS  Google Scholar 

  111. Saar R.A. and Weber J.H. 1980 Lead(II) complexation by fulvic acid: How it differs from fulvic acid complexation of copper(II) and cadmium(II). Geochim. Cosmochim Acta 44, 1381–1384.

    Article  CAS  Google Scholar 

  112. Salardini A.A. and Murphy L.S. 1978 Grain sorghum (Sorghum bicolor Pers.) responses to organic iron on calcareous soils. Plant Soil 49, 57–70.

    Article  CAS  Google Scholar 

  113. Sanders J.R. 1982 The effect of pH upon the copper and cupric ion concentrations in soil solution. J. Soil Sci. 33, 679–689.

    Article  CAS  Google Scholar 

  114. Sanders J.R. 1983 The effect of pH on the total and free ionic concentrations of manganese, zinc, and cobalt in soil solutions. J. Soil Sci. 34, 315–323.

    Article  CAS  Google Scholar 

  115. Schnitzer M. 1977 Recent findings on the characterization of humic substances extracted from soils from widely differing climatic zones, pp. 117–131. In Proc. Symposium on Soil Organic Matter. FAO/IAEA, Vienna.

    Google Scholar 

  116. Schnitzer M. 1969 Reaction between fulvic acid, a soil humic compound, and inorganic soil constitutents. Soil Sci. Soc. Am. Proc. 33, 75–81.

    Article  CAS  Google Scholar 

  117. Schnitzer M. and Hansen E.H. 1970 Organo-metallic interactions in soils: 8. Soil Sci. 109, 333–340.

    Article  CAS  Google Scholar 

  118. Schnitzer M. and Khan S.U. 1972 Humic Substances in the Environment. Marcel Dekker, New York, 327 pp.

    Google Scholar 

  119. Schnitzer M. and Rauthan B.S. 1981 Effects of a soil fulvic acid on the growth and nutrient content of cucumber (Cucumus sativus) plants. Plant Soil 63, 491–495.

    Article  Google Scholar 

  120. Senesi M., Griffith S.M. and Schnitzer M. 1977 Binding of Fe3+ by humic materials. Geochim. Cosmochim. Acta 41, 969–976.

    Article  CAS  Google Scholar 

  121. Shuman M.S. and Woodward G.P., Jr 1977 Stability constants of copper-organic chelates in aquatic samples. Environ. Sci. Technol. 11, 809–813.

    Article  CAS  Google Scholar 

  122. Singh A.P., Sakal R. and Singh B.P. 1982 Effect of zinc enriched compost and other methods of zinc application on zinc nutrition of rice in calcareous soil. J. Indian Soc. Soil Sci. 30, 572–573.

    CAS  Google Scholar 

  123. Singh S.P., Sinha M.K. and Randhawa N.S. 1979 Effect of zinc-amended poultry manure and zinc sulphate on the growth and uptake of zinc by corn (Zea mays L.). Plant Soil 52, 501–505.

    Article  CAS  Google Scholar 

  124. Sladky Z. 1959 The effect of extracted humus substances on growth of plant roots. Biol. Plant. Praha 1, 142–150.

    Article  Google Scholar 

  125. Smidova M. 1960 The influence of humic acid on the respiration of plant roots. Biol. Plant. Praha 2, 152–164.

    Article  CAS  Google Scholar 

  126. Smith W.H. 1976 Character and significance of forest tree root exudates. Ecol. 57, 324–331.

    Article  CAS  Google Scholar 

  127. Sposito G. and Holtzclaw K.M. 1979 Copper(II) complexation by fulvic acid extracted from sewage sludge as influenced by nitrate versus perchlorate background ionic media. Soil Sci. Soc. Am. J. 43, 47–51.

    Article  CAS  Google Scholar 

  128. Sposito G., Holtzclaw K.M. and LeVesque-Madore C.S. 1979 Cupric ion complexation by fulvic acid extracted from sewage sludge-soil mixtures. Soil Sci. Soc. Am. J. 43, 1148–1155.

    Article  CAS  Google Scholar 

  129. Stevenson F.J. 1976 Stability constants of Cu3+, Pb3+, and Cd3+ complexes with humic acids. Soil Sci. Soc. Amer. J. 40, 665–672.

    Article  CAS  Google Scholar 

  130. Stevenson F.J. 1977 Nature of divalent transition metal complexes of humic acids as revealed by a modified potentiometric titration procedure. Soil Sci. 123, 10–17.

    Article  CAS  Google Scholar 

  131. Stevenson F.J. 1979 Humates: facts and fantasies on their value as commercial soil amendments. Crops and Soils 31, 14–16.

    Google Scholar 

  132. Stevenson F.J. 1982 Humus chemistry: Genesis, composition, reactions. Wiley Interscience. 465 pp.

    Google Scholar 

  133. Stevenson F.J. and Ardakani M.S. 1972 Organic matter reactions involving micronutrients. p. 79–114. In J.J. Mortvedt, P.M. Giordano, and W.L. Lindsay (eds.) Micronutrients in agriculture. Am. Soc. Agron., Madison, Wise.

    Google Scholar 

  134. Stevenson F.J. and Fitch A. 1981 Reactions with organic matter, pp. 69–95. In J.F. Loneragan, A.D. Robson, and R.D. Graham (eds.) Copper in Soils and Plants. Academic Press, New York.

    Google Scholar 

  135. Strickland R.C, Chaney W.R. and Lamoreaux R.S. 1979 Organic matter influences phytotoxicity of cadmium to soybeans. Plant Soil 52, 393–402.

    Article  CAS  Google Scholar 

  136. Takamatsu T. and Yoshida T. 1978 Determination of stability constants of metal-humic acid complexes by potentiometric titration and ion-selective electrodes. Soil Sci. 125, 377–386.

    Article  CAS  Google Scholar 

  137. Takkar P.N. 1969 Effect of organic matter on soil iron and manganese. Soil Sci. 108, 108–112.

    Article  CAS  Google Scholar 

  138. Tan K.H. and Nopamornbodi V. 1979 Effect of different levels of humic acids on nutrient content and growth of corn (Zea mays L.). Plant Soil 51, 283–287.

    Article  CAS  Google Scholar 

  139. Thomas J.D. and Mathers A.C. 1979 Manure and iron effects on sorghum growth on iron-deficient soil. Agron. J. 71, 792–794.

    Article  CAS  Google Scholar 

  140. Tuschall J.R. Jr and Brezonik P.L. 1981 Evaluation of the copper anodic stripping voltammetry complexometric titration from complexing capacities and conditional stability constants. Anal. Chem. 53, 1986–1989.

    Article  CAS  Google Scholar 

  141. Tuschall J.R. jr and Brezonik P.L. 1983 Application of continuous-flow ultrafiltration and competing ligand/differential spectrophotometry for measurement of heavy metal complexation by dissolved organic matter. Anal. Chim. Acta. 149, 47–58.

    Article  CAS  Google Scholar 

  142. Tyler L.D. and McBride M.B. 1982 Influence of Ca, pH and humic acid on Cd uptake. Plant Soil 64, 259–262.

    Article  CAS  Google Scholar 

  143. Underdown A.W., Langford CH. and Gamble D.S. 1981 Light scattering of a polydisperse fulvic acid. Anal. Chem. 53, 2139–2140.

    Article  CAS  Google Scholar 

  144. van den Berg C.M.G. and Kramer J.R. 1979 Determination of complexing capacities of ligands in natural waters and conditional stability constants of the copper complexes by means of manganese dioxide. Anal. Chim. Acta. 106, 113–120.

    Article  Google Scholar 

  145. van Dijk H. 1971 Cation binding of humic acids. Geoderma 5, 53–67.

    Article  Google Scholar 

  146. Vaughan D. and MacDonald I.R. 1976 Some effects of humic acid on cation uptake by parenchyma tissue. Soil Biol. Biochem. 8, 415–441.

    Article  CAS  Google Scholar 

  147. Vinkler P., Lakatos B. and Meisel J. 1976 Infrared spectroscopic investigations of humic substances and their metal complexes. Geoderma 15, 231–242.

    Article  CAS  Google Scholar 

  148. Walker D.R. and Smith R.L. 1967 Iron deficiency in deciduous fruit. The micronutrient manual. Farm Tech. 23(6).

    Google Scholar 

  149. Wallace A. and Ashcroft R.T. 1956 Ammonium lignin sulfonate as a chelating agent for supplying soluble iron to plants. Soil Sci. 82, 233–236.

    Article  CAS  Google Scholar 

  150. Wang T.S.C, Cheng S.Y. and Tung H. 1967 Dynamics of soil organic acids. Soil Sci. 104, 138–144.

    Article  CAS  Google Scholar 

  151. Warncke D.D. and Barber S.A. 1972 Diffusion of zinc in soil: I. The influence of soil moisture. Soil Sci. Soc. Am. Proc. 36, 39#x2013;42.

    Article  CAS  Google Scholar 

  152. Warncke D.D. and Barber S.A. 1973 Diffusion of zinc in soils: III. Relation to zinc adsorption isotherms. Soil Sci. Soc. Am. Proc. 37, 355–358.

    Article  CAS  Google Scholar 

  153. White M.C and Chaney R.L. 1980 Zinc, cadmium and manganese uptake by soybean from two zinc-and cadmium-amended coastal plain soils. Soil Sci. Soc. Am. J. 44, 308–313.

    Article  CAS  Google Scholar 

  154. Whitehead D.C, Dibb H. and Hartley R.D. 1981 Extractant pH and release of phenolic compounds from soils, plant roots and leaf litter. Soil Biol. Biochem. 13, 343–348.

    Article  CAS  Google Scholar 

  155. Whitehead D.C, Dibb H. and Hartley R.D. 1982 Phenolic compounds in soil as influenced by the growth of different plant species. J. Appl. Ecol. 19, 579–588.

    Article  CAS  Google Scholar 

  156. Wilkinson H.F., Loneragan J.F. and Quirk J.P. 1968 The movement of zinc to plant roots. Soil Sci. Soc. Am. Proc. 32, 831–833.

    Article  Google Scholar 

  157. Wilkinson H.F., Loneragan J.F. and Quirk J.P. 1968 Calcium supply to plant roots. Science 161, 1245–1246.

    Article  CAS  Google Scholar 

  158. Young S.D., Bache B.W. and Linehan D.J. 1982 The potentiometric measurement of stability constants of soil polycarboxylate-Cu3+ chelates. J. Soil Sci. 33, 467–475.

    Article  CAS  Google Scholar 

  159. Zunino H., Peirano P., Aquilera M. and Escobar I. 1972 Determination of maximum complexing ability of water-soluble complexants. Soil Sci. 114, 414–416.

    Article  CAS  Google Scholar 

  160. Zunino H. and Martin J.P. 1977 Metal-binding organic macromolecules in soil: 2. Characterization of the maximum binding ability of the macromolecule. Soil Sci. 123, 188–202.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Chen, Y., Stevenson, F.J. (1986). Soil organic matter interactions with trace elements. In: Chen, Y., Avnimelech, Y. (eds) The Role of Organic Matter in Modern Agriculture. Developments in Plant and Soil Sciences, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4426-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4426-8_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8470-3

  • Online ISBN: 978-94-009-4426-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics