Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 112))

Abstract

This overview is not intended as yet another contribution to existing reviews on the physics of sputtering and its history. In this respect, the interested reader is referred to the excellent recent monographs and conference proceedings given in Ref.1 to 5. The intention of this article is to give an introduction to physical sputtering, guided by the interplay between collisional and “thermal” sputtering which has obscured the understanding of the phenomenon since its discovery. It will become apparent that angular distributions of sputtered particles have always played a decisive role in identifying the relevant mechanisms, energy distributions have allowed quantifying them, and mass distributions now urge further efforts towards understanding collective processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Behrisch R.: Festkörperzerstäubung durch Ionenbeschuß, in Ergebn. Exakt Naturwiss. 35 (1964) 295

    Google Scholar 

  2. Kaminsky M.: Atomic and Ionic Impact Phenomena on Metal Surfaces, Springer-Verlag Berlin, Heidelberg, New York (1965)

    Google Scholar 

  3. Behrisch R. (ed.): Sputtering by Particle Bombardment Vol. I: Physical Sputtering of Single-Element Solids (1981) Vol. II: Sputtering of Alloys and Compounds, Electron and Neutron Sputtering, Surface Topography (1983) Vol. III: in preparation (2001)

    Google Scholar 

  4. Behrisch R., W. Heiland, W. Poschenrieder, P. Staib, H. Verbeek (Eds.): Ion Surface Interaction, Sputtering and Related Phenomena, Gordon & Breach, London, New York Paris (1973) Also published as volume 18/19 in Radiation Effects

    Google Scholar 

  5. Varga P., G. Betz, F.P. Viehböck (Eds.): Symposium on Sputtering, Perchtoldsdorf/Vienna (1980) Published by IAP, Technische Universität Wien, Austria

    Google Scholar 

  6. Stark J.: Die Elektrizität in Gasen, Barth, Leipzig (1902)“In erster Linie haben wir die Zerstäubung als Verdampfung zu betrachten und auf die hohe Temperatur an der Oberfläche der Kathode zurückzuführen. Es können die Metallmoleküle da, wo positive Ionen auftreffen, infolge von deren riesiger kinetischer Energie für kurze Zeit unmittelbar nach dem Auftreffen eine sehr hohe Temperatur von den positiven Ionen übernehmen, infolge davon in den Gasraum hineinverdampfen…” “We must regard sputtering primarily as evaporation caused by the high temperature at the surface of the cathode. Where the positive ions strike, the metal molecules can acquire from them, as a result of their huge kinetic energy, a very high temperature which persists for a short time directly after the impact; the metal particles consequently evaporate into the vacuum…” p. 434

    Google Scholar 

  7. Thomson J.J., G.P. Thomson: Conduction of Electricity through Gases, Cambridge Univ. Pr., Vol. I (1928), Vol. II (1933)

    Google Scholar 

  8. Stark J.: Z. Elektrochem. 14 (1908) 752, and 15 (1909) 509 “Ein Atomstrahl (Kanalstrahl) besitzt eine große kinetische Energie; beim Auftreffen auf ein Atom an der Oberfläche eines festen oder flüssigen Körpers kann er an dieses einen Teil seiner kinetischen Energie durch Stoß abgeben, mag er hierbei reflektiert werden oder nicht. Indem das getroffene Atom eine Geschwindigkeitskomponente in der Richtung des auftreffenden Atomstrahls von diesem übernimmt, wird es in gewissem Sinne selbst zu einem geladenen oder ungeladenen Strahle und kann, indem es auf seinem Wege auf ein anderes Atom trifft, an diesem eine Reflexion erfahren: und erhält es hierbei eine Geschwindigkeitskomponente senkrecht zur Oberfläche nach außen, so kann es aus dieser heraus in den Gasraum übertreten…” “An atomic ray (canal ray) possesses a large kinetic energy; during impact with an atom on the surface of a solid or fluid body, it can give up a part of its kinetic energy to the atom in the collision, whether or not thereby undergoing reflection. The atom struck acquires a component of velocity in the direction of the incident atomic beam, it will itself in a sense become a charged or uncharged ray and can experience reflection by striking another atom in its path; should it thus acquire a velocity component outwards normal to the surface, it can exit from the surface into the vacuum…” p. 754

    CAS  Google Scholar 

  9. Hittorf W.: Ann. Physik u. Chemie (Lpzg.) 21 (1884) 90

    Google Scholar 

  10. Plücker J.: ibid. 104 (1858) 113

    Google Scholar 

  11. Granquist G.: Öfvers. Svenska Vet. Akad. Förh. 55 (1898) 709

    Google Scholar 

  12. Kohlschütter V.: Die Zerstäubung durch Kanalstrahlen, Jahrb. d. Radioaktivität u. Elektronik 9 (1912) 355

    Google Scholar 

  13. Dessauer Fr.: Z. Physik 23 (1923) 38

    Google Scholar 

  14. Kapitza P.: Phil Mag. 45 (1923) 989 see, however, also A. Becker: Ann. Physik 75 (1924) 217 and Ref. 18, where a more critical view of thermal electron emission is taken.

    Google Scholar 

  15. Hippel A. v.: Ann. Physik 81 (1926) 1043

    Google Scholar 

  16. Seeliger R., K. Sommermeier: Z. Physik 93 (1935) 692

    Google Scholar 

  17. Sommermeyer K.: Ann. Physik 25 (1936) 481

    Google Scholar 

  18. Morgulis N.D.: Z. Eksper. Teoret. Fiz. 9 (1939) 1484 (in Russian)

    CAS  Google Scholar 

  19. Townes C.H.: Phys. Rev. 65 (1944) 319

    CAS  Google Scholar 

  20. Wehner G.K.: J. Appl. Phys. 26 (1955) 1056, and Phys. Rev. 102 (1956) 690

    CAS  Google Scholar 

  21. Yurasova V.E.: Sov. Phys.-Techn.Phys. 3 (1958) 1806 Yurasova V.E., N. Pleshivtsev, I. Orfanov: Sov. Phys.-JETP,37 (1960) 689 Yurasova V.E., I.G. Sirotenko: ibid. 968 (1962)

    CAS  Google Scholar 

  22. Thompson M.W.: Phil. Mag. 4 (1959) 139

    Google Scholar 

  23. Nelson R.S., M.W. Thompson: Proc. Roy. Soc. A 259 (1961) 458

    Google Scholar 

  24. Molchanov V.A., V.G. Tel’kovskii, V.M. Chickerov: Sov. Phys.-Doklady 6 (1961) 486

    Google Scholar 

  25. Perovic B.: Bull. Inst. Nucl. Sci. “Boris Kidrich” 11 (1961) 37

    CAS  Google Scholar 

  26. Cooper C.B., J. Comas: J. Appi. Phys. 36 (1965) 2891

    CAS  Google Scholar 

  27. Chen G.P., Besocke K., S. Berger, W.O. Hofer: to be published

    Google Scholar 

  28. Linders J., H. Niedrig, M. Sternberg: Nucl. Instr. Meth. Phys. Res. B2 (1984) 649

    Google Scholar 

  29. Robinson M.T., A.L. Southern: J. Appl. Phys. 38 (1967) 2969 Robinson M.T.: ibid. 40 (1969) 4982 Robinson M.T., A.L. Southern: ibid. 39 (1968) 3463

    Google Scholar 

  30. Hofer W.O.: Thesis Universität München 1972, and Ref. 4 p. 7

    Google Scholar 

  31. Olson N.Th., H.P. Smith: AIAA-Journal 4 (1966) 916 Olson N.Th., H.P. Smith: Phys. Rev. 157 (1967) 241

    CAS  Google Scholar 

  32. Musket R.G., H.P. Smith: J. Appl. Phys. 39 (1968) 3579 Higgins T.B., N.Th. Olson, H.P. Smith: J. Appl. Phys. 39 (1968) 4849

    CAS  Google Scholar 

  33. Nelson R.S., M.W. Thompson, H. Montgomery: Phil. Mag. 7 (1962) 1385

    CAS  Google Scholar 

  34. Chapman G.E., J.C. Kelly: Austral. J. Phys. 20 (1967) 283

    CAS  Google Scholar 

  35. Schulz F., R. Sizmann: Proc. 8th Int. Conf. Ion. Phen. Gases,Vienna, 1967, p. 35

    Google Scholar 

  36. Schulz F.: Thesis Techn. Universität München 1967

    Google Scholar 

  37. Szymczak W., K. Wittmaack: Nucl. Instr. Meth. 194 (1982) 561

    CAS  Google Scholar 

  38. Szymczak W.: Thesis, Universität München 1985

    Google Scholar 

  39. Silsbee R.H.: J. Appl. Phys. 28 (1957) 1246

    Google Scholar 

  40. Lehmann Chr., G. Leibfried: Z. Physik 162 (1971) 203

    Google Scholar 

  41. Robinson M.T.: Ref. 2 Vol. I p. 73–218

    Google Scholar 

  42. Nelson R.S., R. v. Jan: Phil Mag. 17 (1968) 1017

    Google Scholar 

  43. Lehmann Chr., P. Sigmund: phys. stat. sol. 16 (1966) 507

    CAS  Google Scholar 

  44. Harrison D.E., J.P. Johnson, N.S. Levy: Appl. Phys. Lett. 8 (1966) 33, and J. Appl. Phys. 39 (1968) 3742

    CAS  Google Scholar 

  45. Brandt W., R. Laubert: Nucl. Instr. Meth. 47 (1967) 201

    CAS  Google Scholar 

  46. Sigmund P.: Phys. Rev. 184 (1969) 383

    CAS  Google Scholar 

  47. Besocke K., S. Berger, W.O. Hofer, U. Littmark: Radiat. Eff. 66 (1982) 35 Hofer W.O., K. Besocke, B. Stritzker: Appl. Phys. A 30 (1983) 83

    CAS  Google Scholar 

  48. Sigmund P., M. Szymonski: Appl. Phys. A 33 (1984) 141

    CAS  Google Scholar 

  49. Nelson R.S.: Phil. Mag. 11 (1965) 291

    CAS  Google Scholar 

  50. Kelly R.: Radiat. Eff. 32 (1977) 91

    CAS  Google Scholar 

  51. Andersen H.H., H.L. Bay: Radiat. Eff. 19 (1973) 139

    Google Scholar 

  52. Sigmund P.: Appl. Phys. Lett. 25 (1974) 169

    Google Scholar 

  53. Sommerfeldt H., E.S. Mashkova, V.A. Molchanov: Radiat. Eff. 9 (1971) 267, and Phys. Lett. 38 A (1972) 237 Holmén G.: Radiat. Eff. 24 (1975) 7

    CAS  Google Scholar 

  54. Anderson G.S., G.K. Wehner: J. Appl. Phys. 34 (1963) 3492, and Surface Sci. 2 (1964) 367 Anderson G.S.: J. Appl. Phys. 37 (1966) 3455

    CAS  Google Scholar 

  55. Tsuge H., S. Esho: J. Appl. Phys. 52 (1981) 4391

    CAS  Google Scholar 

  56. Okutani T., M. Shikata, S. Ishimura, R. Shimizu: J. Appl. Phys. 51 (1980) 2884

    Google Scholar 

  57. Andersen H.H., B. Stenum, T. Sørensen, H.J. Whitlow: Nucl. Instr. Meth. Phys. Res. B 6 (1985) 459

    CAS  Google Scholar 

  58. Koedam M., Thesis Reijksuniversiteit Utrecht 1961

    Google Scholar 

  59. Weijsenfeld C.H.: Thesis Reijksuniversiteit Utrecht 1966

    Google Scholar 

  60. Veen van A., J.M. Fluit: Nucl. Instr. Meth. 170 (1980) 341, and Thesis Reijksuniversiteit Utrecht 1979

    Google Scholar 

  61. Littmark, U., G. Maderlechner: SPIG 1976 Dubrovnik Jugoslavi a, p. 136

    Google Scholar 

  62. Fedder S., U. Littmark: Nucl. Instr. Meth. 194 (1982) 607

    Google Scholar 

  63. Biersack J.P., W. Eckstein: Appl. Phys. A 34 [1984) 73

    CAS  Google Scholar 

  64. Hautala M., H.J. Whitlow: Nucl. Instr. Meth. Phys. Res. B6 (1985) 466

    CAS  Google Scholar 

  65. Bay H.L., J. Bohdansky: Appl. Phys. 19 (1979) 421

    CAS  Google Scholar 

  66. Bay H.L., J. Bohdansky, W.O. Hofer, J. Roth: Appl. Phys. 21 (1980) 327

    CAS  Google Scholar 

  67. Hofer W.O., H.L. Bay, P.J. Martin: J. Nucl. Instr. 76/77 (1978) 156

    Google Scholar 

  68. Rödelsperger K., A. Scharmann: Z. Physik B 28 (1977) 37, and Nucl. Instr. Meth. 132 (1976) 355

    Google Scholar 

  69. Motohiro T., Y. Taga, K. Nakajima: Surf. Sci. 118 (1982) 66

    CAS  Google Scholar 

  70. Hermanne, N. Ref. 4 p. 161

    Google Scholar 

  71. Alexander V., H.J. Lippold, H. Niedrig: Radiat. Eff. 56 (1981) 241, and Ref. 5, p. 622

    CAS  Google Scholar 

  72. Carter G., B. Navinsek, J.L. Whitton: Ref. 3 Vol. II p. 231

    Google Scholar 

  73. Littmark U., W.O. Hofer: J. Mater. Sci. 13 (1978) 2577

    Google Scholar 

  74. Panitz J.K.G., D.J. Sharp: J. Vac. Sci. Technol. 17 (1980) 282

    CAS  Google Scholar 

  75. Thompson M.W., R.S. Nelson: Phil. Mag. 7 (1962) 2015

    CAS  Google Scholar 

  76. Thompson M.W.:Phys. Lett. 6 (1963) 24

    Google Scholar 

  77. Stuart R.V., G.K. Wehner: J. Appl. Phys. 35 (1964) 1819, and 40 (1969) 803

    CAS  Google Scholar 

  78. Hulpke E., Ch. Schlier: Z. Physik 207 (1967) 294

    Google Scholar 

  79. Thompson M.W., B.W. Farmery, P.A. Newson: Phil. Mag 18 (1968) 361 Thompson M.W.: ibid. 18 (1968) 377 Farmery B.W., M.W. Thompson: ibid. 18 (1968) 415

    CAS  Google Scholar 

  80. Chapman G.E., B.W. Farmery, M.W. Thompson, I.H. Wilson: Radiat. Eff. 13 (1972) 121

    CAS  Google Scholar 

  81. Reid I.H., M.W. Thompson, B.W. Farmery: Phil. Mag. A 42 (1980) 151

    CAS  Google Scholar 

  82. Ahmad S., B.W. Farmery, M.W. Thompson: Phil. Mag. A 44 (1981) 1387

    Google Scholar 

  83. Ahmad S., M.W. Thompson: Phil. Mag. A 50 (1984) 299

    CAS  Google Scholar 

  84. Husinsky W., G. Betz, I. Girgis: J. Vac. Sci. Technol. A 2 (1984) 698

    Google Scholar 

  85. Husinsky W., G. Betz, I. Girgis, F. Viehböck, H.L. Bay: J. Nucl. Mater. 128 & 129 (1984) 577

    Google Scholar 

  86. Bay H.L., W. Berres, E. Hintz: Nucl. Instr. Meth. 104 (1982) 555

    Google Scholar 

  87. Schweer B., H.L. Bay: in Proc. IV Int. Conf. on Solid Surfaces and IIIrd Eur. Conf. on Surf. Sci., ed. by D.A. Degras ans M. Costa ( Société Francaise du Vide, Paris 1980 ) p. 1349

    Google Scholar 

  88. Schweer B., H.L. Bay: Appl. Phys. A 29 (1982) 53 Dullni E.: Appl. Phys. A38 (1985) 131

    Google Scholar 

  89. Bay H.L., W. Berres: Nucl. Instr. Meth. Phys. Res. B 2 (1984) 606

    Google Scholar 

  90. Yu M.L., D. Grischkowsky, A.C. Blatant: Phys. Rev. Lett. 48 (1982) 427

    CAS  Google Scholar 

  91. Wright R.B., M.J. Pellin, D.M. Gruen: Surf. Sci. 110 (1981) 151 Young C.E., W.F. Calaway, M. J. Pellin, D.M. Gruen: J. Vac. Sci. Techn. A2 (1984) 693

    CAS  Google Scholar 

  92. Bay H.L., B. Schweer: in Sympos. on Surf. Sci. Obertraun, Austria 1985 ed. by G. Betz et al. TU Wien p. 147

    Google Scholar 

  93. Staudenmaier G.: Radiat. Eff. 13 (1972) 87

    CAS  Google Scholar 

  94. Wittmaack K. in Inelastic Ion-Surface Collis., eds.: N.H. Tolk et al., Academic Press 1977 p. 153; review paper.

    Google Scholar 

  95. Veksler V.I.: Sov. Phys. JETP 11 (1960) 235

    Google Scholar 

  96. Vasile M.J.: Phys. Rev. B 29 (1984) 3785

    Google Scholar 

  97. Szymonski M., A.E. de Vries: Phys. Lett. 63A (1977) 359, and J. Phys. D, 11 (1978) 751

    Google Scholar 

  98. de Vries A.E.: Ref. 5 p. 256

    Google Scholar 

  99. Honig R.E.: J. Appl. Phys. 29 (1958) 549

    Google Scholar 

  100. Krohn, V.E.: J. Appl. Phys. 33 (1962) 3523

    CAS  Google Scholar 

  101. Woodyard J.R., C.B. Cooper: J. Appl. Phys. 35 (1964) 1107 Woodyard J.R.: 15th Ann. Conf. Mass Spec. Appl. Top., Denver (1967) p. 254

    CAS  Google Scholar 

  102. Hofer W.O.: Nucl. Instr. Meth. 170 (1980) 275, review paper

    CAS  Google Scholar 

  103. Hortig G., M. Müller: Z. Physik 221 (1969) 119

    CAS  Google Scholar 

  104. Thum F., W.O. Hofer: Surf. Sci. 90 (1979) 331

    CAS  Google Scholar 

  105. Schou J., W.O. Hofer: Appl. Surf. Sci. 10 (1982) 383

    CAS  Google Scholar 

  106. Oechsner H., W. Gerhard: Surf. Sci. 44 (1974) 480

    CAS  Google Scholar 

  107. Gerhard W.: Z. Physik B 22 (1975) 41

    Google Scholar 

  108. Oechsner H., E. Stumpe: Appl. Phys. 14 (1977) 43

    CAS  Google Scholar 

  109. Gnaser H., W.O. Hofer: to be published

    Google Scholar 

  110. Können G.P., A. Tip, A. E. de Vries: Radiat. Eff. 21 (1974) 269, and 26 (1975) 23

    Google Scholar 

  111. Bitenskii I.S., E.S. Parilis: Sov. Phys. Tech. Phys. 23 (1978) 1104

    Google Scholar 

  112. Harrison D.E., C.B. Delaplain: J. Appl. Phys. 47 (1976) 2252

    CAS  Google Scholar 

  113. Dörnenburg E., H. Hintenberger: Z. Naturforschg. 14a (1959) 765, and 16a (1961) 532

    Google Scholar 

  114. Blaise G., G. Slodzian: C.R. Acad. Sc. Paris, Ser. B 266 (1968) 1525

    Google Scholar 

  115. Joyes P., J. Phys. Chem. Solids 32 (1971) 1269

    CAS  Google Scholar 

  116. Rodriguez-Murcia H., H.E. Beske: Adv. in Mass Spectrom. 7 (1978) 598, and Report Jül-1292 (1976)

    Google Scholar 

  117. Dzhemaliev N.Kh., R.I. Kurbanov: Izv. Akad. Nauk SSSR, Ser. Fiz. 43 (1979) 606

    Google Scholar 

  118. Snowdon K.: Nucl. Instr. Meth. B in press

    Google Scholar 

  119. Merkle K.L., W. Jäger: Phil. Mag. A 44 (1981) 741 Merkle K.L.: 35th Ann. Proc. Electron Microscopy Soc. Amer., Boston, Mass. (1977), ed.: G.W. Bailey, p. 36

    CAS  Google Scholar 

  120. Bay H.L., H.H. Andersen, W.O. Hofer, O. Nielsen: Nucl. Instr. Meth. 133 (1976) 301

    Google Scholar 

  121. Sigmund P.: Ref. 93 p. 121

    Google Scholar 

  122. Kaminsky M., J. Peavey, S. Das: Phys. Rev. Lett. 32 (1974) 599, and J. Nucl. Mater. 53 (1974) 162

    CAS  Google Scholar 

  123. Behrisch R.: Nucl. Instr. Meth. 132 (1976) 293, and Ref. 3, Vol. II p 179, review articles

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Hofer, W.O. (1986). Physical Sputtering of Elemental Metals and Semiconductors. In: Kiriakidis, G., Carter, G., Whitton, J.L. (eds) Erosion and Growth of Solids Stimulated by Atom and Ion Beams. NATO ASI Series, vol 112. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4422-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4422-0_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8468-0

  • Online ISBN: 978-94-009-4422-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics