Skip to main content

Instrumentation for the Measurement of CO2 Assimilation by Crop Leaves

  • Chapter

Part of the book series: NATO ASI Series ((NSSE,volume 111))

Abstract

Growth of crops, in terms of carbon, organic matter or dry-weight gain, has traditionally been measured by sampling, drying, weighing and chemical analysis of the dried material. While this technique is adequate for assessing long-term changes, its value is limited where interest centers either on short-term dry-matter gain, i.e. intervals of days, hours or minutes, or on contributions made by individual organs, e.g. the flag leaves of cereals. The shortest periods over which statistically significant change in plant dry-weight may be resolved, even by extrapolation with statistical regression techniques (1), usually exceeds one day. Since water content is highly variable, plants must be dried before weighing, thus making the method unavoidably destructive. Therefore, production may only be estimated by sampling from a population, so introducing a random error which will decrease sensitivity. Interest in the relation of photosynthetic activity to productivity centers on carbon gain. Direct measurement of CO2 uptake provides an alternative method of measuring productivity with six important advantages over measurements of dry-weight change:

  1. 1)

    It is instantaneous, measuring production in vivo on the time-scale of both in vitro studies of sub-cellular photosynthetic processes and of in vivo slow chlorophyll fluorescence transients (2).

  2. 2)

    It is non-destructive, thus the same leaf may be measured throughout a treatment or throughout its life.

  3. 3)

    The immediate effects of sudden changes in microclimate or experimental treatments on photosynthetic productivity may be determined, where change in dry-weight gain would require days before an effect might be demonstrated. Transient effects of, for example, environmental change or herbicide application on production may be revealed by measurement of gas exchange, yet be of too short a duration to be apparent in dry-weight changes.

  4. 4)

    It accounts for all photosynthetic C-gain, including the large fraction of up to 30% of photosynthate which may be lost by root exudation (3).

  5. 5)

    It allows separate investigation of individual leaves, parts of leaves or other photosynthetic organs.

  6. 6)

    It allows separation of photosynthetic gain from respiratory losses of carbon.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hunt, R. Plant Growth Curves, pp. 248, Edward Arnold, London, 1983.

    Google Scholar 

  2. Ireland, C.R., Long, S.P. and Baker, N.R. Planta 160: 550–558, 1984.

    Article  CAS  Google Scholar 

  3. Bowen, G.D. In: Contemporary Microbial Ecology (E.C. Ellwood, J.H. Hedger, M.J. Latham, J.M. Lynch and J.H. Slater, eds.), pp. 283–304, 1980.

    Google Scholar 

  4. von Caemmerer, S. and Farquhar, G.D. Planta 153: 376–387, 1981.

    Article  Google Scholar 

  5. Catsky, J., Lake, J.V., Begg, J.E. and Voznesenskii, V.L. In: Plant Photosynthetic Production. Manual of Methods (Z. Sestak, J. Catsky and P.G. Jarvis, eds.), The Hague, pp. 198–237, 1971.

    Google Scholar 

  6. Incoll, L.D., Long, S.P. and Asmore, M.R. Curr. Adv. Plant Sci. 27: 331–343, 1977.

    Google Scholar 

  7. Unsworth, M.H. In: Plants and Their Atmospheric Environment (J. Grace, E.D. Ford and P.G. Jarvis, eds.), Glackwell, Oxford, pp. 111–138, 1981.

    Google Scholar 

  8. Sestak, Z., Jarvis, P.G. and Catsky, J. In: Plant Photosynthetic Production. Manual of Methods (Z. Sestak, J. Catsky and P.G. Jarvis, eds.) pp. 1–48, The Hague, 1971.

    Google Scholar 

  9. Jones, M.B. and Milburn, T.R. J. Exp. Bot. 25: 595–597, 1974.

    Article  Google Scholar 

  10. Griffiths, J.H. and Jarvis, P.G. J. Exp. Bot. 32: 1157–1168, 1981.

    Article  CAS  Google Scholar 

  11. Schultze, E.D., Hall, A.E., Lange, O.L. and Walz, H. Oecologia 53: 141–145, 1982.

    Article  Google Scholar 

  12. Banwell, C.N. Fundamentals of Molecular Spectroscopy, McGraw- Hill, London, 1966.

    Google Scholar 

  13. Janac, J., Catsky, J. and Jarvis, P.G. In: Plant Photosynthetic Production. Manual of Methods (Z. Sestak, J. Catsky and P.G. Jarvis, eds.) pp. 111–192, The Hague, 1971.

    Google Scholar 

  14. Janac, J. Photosynthetica 4: 302–308, 1970.

    CAS  Google Scholar 

  15. Janac, J. Photosynthetica 4: 302–308, 1970.

    CAS  Google Scholar 

  16. Coombes, R.G. and Stroud, D.J. International Environment and Safety, June 1982.

    Google Scholar 

  17. Ohtaki, E.land Matsui, M. Boundary-Layer Meteorol. 24: 109–19, 1983.

    Google Scholar 

  18. Desjardins, R.L., Brach, E.J., Alvo, P. and Schuepp, P.H. Science 216: 733–735, 1982.

    Article  PubMed  CAS  Google Scholar 

  19. Hill, D.W. and Powell, T. Non-dispersive Infrared Gas Analysis in Science, Medicine and Industry, Adam Hilger Ltd, London, pp. 222, 1968.

    Google Scholar 

  20. Parkinson, K.J. and Legg, B.J. J. Phys. E. Sci. Instrum. 4: 598–600, 1971.

    Article  CAS  Google Scholar 

  21. Ower, E. and Pankhurst, R.C. The Measurement of Air Flow, 5th edition (in Si/Metric Units), Pergamon Press, Oxford, 1977.

    Google Scholar 

  22. Hayward, A.T.J. Flowmeters. A Basic Guide and Source Book for Users, Macmillan, London, 1979.

    Google Scholar 

  23. Brain, T.J.S. and Scott, R.W.W. J. Phys. E. Sci. Instrum. 25: 967–980, 1982.

    Article  Google Scholar 

  24. Brain, T.J.S. and Scott, R.W.W. J. Phys. E. Sci. Instrum. 25: 967–980, 1982.

    Article  Google Scholar 

  25. Ewing, J.A. Roc. Roy. Soc. Edin. 45: 308–321, 1924.

    Google Scholar 

  26. Studman, C.J. and Compton, S.E. J. Phys. E. Sci. Instrum. 16: 190–192, 1983.

    Article  Google Scholar 

  27. Thomas, C.C. J. Franklin Instit. 61: 411–460, 1911.

    Article  Google Scholar 

  28. Widmer, A.E., Fehlmann, R. and Rehwald, W. J. Phys. E. Sci. Instrum. 15: 213–220, 1982.

    Article  Google Scholar 

  29. Anon. Mass Flowmeters. Mass Flow Controllers, Tylan Corporation, Carson, 1981.

    Google Scholar 

  30. Barr, G. J. Sci. Instrum. 11: 321–324, 1934.

    Article  Google Scholar 

  31. Levy, A. J. Sci. Instrum. 41: 449–453, 1961.

    Article  Google Scholar 

  32. Kolk, J.F.M. and Moulijn, J.A. J. Phys. E. Sci. Instrum. 11: 259–261, 1978.

    Article  CAS  Google Scholar 

  33. Brain, U.S. and Reid, J. Performance of Small Diameter Cy1indrical Critical-f1ow Nozzles. Report #546, National Engineering Laboratory, Glasgow, 1973.

    Google Scholar 

  34. Parkinson, K.J. and Day, W. J. Appl. Ecol. 16: 623–632, 1979.

    Article  Google Scholar 

  35. Anon. Vacuum-Pressure-Flow Control Systems. Bulletin PFC-11/79, MKS Instruments, Burlington, 1979.

    Google Scholar 

  36. Incoll, L.D. and Wright, W.H. Spec. Soils. Bull. Conn. Agric. Exp. Stn. Number 30, 1969.

    Google Scholar 

  37. Harris, G.C., Cheesebrough, J.K. and Walker, D.A. Plant Physiol. 71: 102–107, 1983.

    Article  PubMed  CAS  Google Scholar 

  38. Harris, G.C., Cheesebrough, J.K. and Walker, D.A. Plant Physiol. 71: 102–107, 1983.

    Article  PubMed  CAS  Google Scholar 

  39. Jarvis, P.G. In: Plant Photosynthetic Production. Manual of Methods (Z. Sestak, J. Catsky and P.G. Jarvis, eds.) pp. 566–622, The Hague, 1971.

    Google Scholar 

  40. Jarvis, P.G., Catsky, J., Eckardt, F.E., Koch, W. and Koller, D. In: Plant Photosynthetic Production. Manual of Methods (Z. Sestak, J. Catsky and P.G. Jarvis, eds.) pp. 49–110, The Hague, 1971.

    Google Scholar 

  41. Oquist, G., Hallgren, J.E. and Brünes, L. Plant Cell Env. 1.: 21–27, 1978.

    Article  Google Scholar 

  42. Idle, D.B. and Proctor, C.W. Plant Cell Env. 6: 437–440, 1983.

    Article  Google Scholar 

  43. Bloom, A., Mooney, H.A., Bjorkman, O. and Berry, J Plant Cell Env. 3: 371–376, 1980.

    Article  CAS  Google Scholar 

  44. Zettlemoyer, F., Micale, J. and Klien, K. In: Water. A Comprehensive Treatise, Vol. 5 (F. Franks, ed.), Plenum Press, pp. 241–241, 1975.

    Google Scholar 

  45. DuPont. Teflon Fluorocarbon Resins, reprint 125-D, pp. 6, DuPont Plastics Div., Geneva, 1970.

    Google Scholar 

  46. Oberbach, K. von. Kunststoff-Kennwerte fur Kunstrukteure, Carl Hanser, München, p. 171, 1975.

    Google Scholar 

  47. Long, S.P. and Woolhouse, H.W. J. Exp. Bot. 29: 567–577, 1978.

    Article  CAS  Google Scholar 

  48. Parkinson, K.J. and Day, W. J. Exp. Bot. 32: 411–418, 1981.

    Article  CAS  Google Scholar 

  49. Korner, C., Scheel, J.A. and Bauer, H. Photosynthetica 13: 45–82, 1979.

    Google Scholar 

  50. Farquhar, G.D. and Sharkey, T.D. Ann. Rev. Plant Physiol. 33: 317–345, 1982.

    Article  CAS  Google Scholar 

  51. Gaastra, P. Meded. Landb. Hogesch. Wageningen 59: 1–68, 1959.

    Google Scholar 

  52. Monteith, J.L. (ed.) Vegetation and the Atmosphere, 2 vol., Academic Press, London, 1975.

    Google Scholar 

  53. Cowan, I.R. Adv. Bot. Res. 4: 117–228, 1977.

    Article  Google Scholar 

  54. Grace, 1983

    Google Scholar 

  55. Parkinson, K.J. and Penman, H.L. J. Exp. Bot. 21: 405–409, 1970.

    Article  Google Scholar 

  56. Leuning, R. Plant Cell Env. 6: 181–194, 1983.

    CAS  Google Scholar 

  57. Sharkey, T.D., Imai, K., Farquhar, G.D. and Cowan, I.R. Plant Physiol. 69: 657–659, 1982.

    Article  PubMed  CAS  Google Scholar 

  58. Farquhar, G.D., Schultze, E.D. and Kuppers, M. Aust. J. Plant Physiol. 7: 315–327, 1980.

    Article  Google Scholar 

  59. Wong, S.C., Cowan, I.R. and Farquhar, G.D. Nature 282: 424–426, 1979.

    Article  Google Scholar 

  60. Wong, S.C., Cowan, I.R. and Farquhar, G.D. Nature 282: 424–426, 1979.

    Article  Google Scholar 

  61. Seeman, J.R. and Berry, J.A. Carnegie Inst. Wash. Yr. Bk. 81: 78–83, 1982.

    Google Scholar 

  62. Farquhar, G.D., von Caemmerer, S. and Berry, J.A. Planta 149: 78–90, 1980.

    Article  CAS  Google Scholar 

  63. Osmond, C.B., Winter, K. and Ziegler, H. In: Encyclopaedia of Plant Physiology, Vol. 12B ( O.L. Lange, P.S. Nobel, C.B. Osmond and H. Ziegler, eds.) pp. 497–547, Springer-Verlag, Berlin, 1982.

    Google Scholar 

  64. Powles, S.B., Berry, J.A. and Bjorkman, O. Plant Cell Env. 6: 117–124, 1983.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Long, S.P. (1986). Instrumentation for the Measurement of CO2 Assimilation by Crop Leaves. In: Gensler, W.G. (eds) Advanced Agricultural Instrumentation. NATO ASI Series, vol 111. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4404-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4404-6_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8459-8

  • Online ISBN: 978-94-009-4404-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics