Skip to main content

Ion Transport Processes in Corn Roots: An Approach Utilizing Microelectrode Techniques

  • Chapter
Advanced Agricultural Instrumentation

Part of the book series: NATO ASI Series ((NSSE,volume 111))

Abstract

There have been many studies conducted on ion or salt absorption by plant roots. This research has focused both on the basic mechanisms involved in transporting the ion into the plant and on the mineral nutrient status of the specific ion of interest (see, e.g. 7, 10, 17, 34). It is our intent here to present an outline of the previous work on K+ transport, in order to provide the background from which the present studies arose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ammann, E., Lanter, F., Steiner, R.A., Schulthess, P., Shijo, Y. and Simon, W., Neutral carrier based hydrogen ion selective microelectrode for extra- and intracellular studies. Anal. Chem. 53: 2267–2269, 1981.

    Article  PubMed  CAS  Google Scholar 

  2. Bange, G.G.J., Diffusion and absorption of ions in plant tissue. III: The role of the root cortex cells in ion absorption. Acta Bot. Neerl. 22: 529–542, 1973.

    CAS  Google Scholar 

  3. Behrens, H.M., Weisenseel, M.H. and Sievers, A., Rapid changes in the pattern of electric current around the root tip of Lepidium sativum L. following gravistimulation. Plant Physiol. 70: 1079–1083, 1983.

    Article  Google Scholar 

  4. Bennett, A.B. and Spanswick, R.M., Optical measurements of ApH and Aty in corn root membrane vesicles: kinetic analysis of CI- effects on a proton-translocating ATPase. J. Membrane Biol. 71: 95–107, 1983.

    Article  CAS  Google Scholar 

  5. Borstlap, A.C., Invalidity of the multiphasic concept of ion absorption in plants. Plant Cell Environ. 4: 189–195, 1981.

    CAS  Google Scholar 

  6. Cheeseman, J.M., Lafayette, P.R., Gronewald, J.W. and Hanson, J.B., Effect of ATPase inhibitors on cell potential and K+ influx in corn roots. Plant Physiol. 65: 1139–1145, 1980.

    Article  PubMed  CAS  Google Scholar 

  7. Clarkson, D.T., Ion Transport and Cell Structure in Plants, McGraw Hill, Maidenhead, UK, 1974.

    Google Scholar 

  8. DuPont, F.M., Giorgi, D.L and Spanswick, R.M., Characterization of a proton-translocating ATPase in microsomal vesicles from corn roots. Plant Physiol. 70: 1694–1699, 1982.

    Article  PubMed  CAS  Google Scholar 

  9. Eisenman, G., Glass Electrodes for Hydrogen and Other Cations: Principles and Practice, M. Dekker, Inc., NY, 1967.

    Google Scholar 

  10. Epstein, E., Mineral Nutrition of Plants: Principles and Perspectives, John Wiley & Sons, NY, 1972.

    Google Scholar 

  11. Epstein, E. and Hagen, C.E., A kinetic study of the absorption of alkali cations by barley roots. Plant Physiol. 27: 457–474, 1952.

    Article  PubMed  CAS  Google Scholar 

  12. Ferrier, J.M., Extracellular ion transport. J. Theoret. Biol. 85: 739–743, 1980.

    Article  CAS  Google Scholar 

  13. Ferrier, J.M. and Lucas, W.J., Plasmalemma transport of OH- in Chara corallina. II: Further analysis of the diffusion system associated with OH- efflux. J. Exp. Botany 30: 705–718, 1979.

    Article  CAS  Google Scholar 

  14. Fisher, J. and Hodges, T.K., Monovalent ion stimulated adenosine triphosphatase from oat roots. Plant Physiol. 44: 385–395, 1969.

    Article  PubMed  CAS  Google Scholar 

  15. Fisher, J.D., Hansen, D. and Hodges, T.K., Correlation between ion fluxes and ion-stimulated adenosine triphosphatase activity of plant roots. Plant Physiol. 46: 812–814, 1970.

    Article  PubMed  CAS  Google Scholar 

  16. Gronewald, J.W., Cheeseman, J.M. and Hanson, J.B., Comparison of the responses of corn root tissue to fusicoccin and washing. Plant Physiol. 63: 255–259, 1979.

    Article  PubMed  CAS  Google Scholar 

  17. Higinbotham, N., The mineral absorption process in plants. Botanical Review 39: 15–69, 1973.

    Article  Google Scholar 

  18. Hodges, T.K., Leonard, R.T., Bracker, C.E. and Keenan, T.W., Purification of an ion-stimulated adenosine triphosphatase from plant roots: association with the plasma membranes. Proc. Natl. Aca. Sci USA 69: 3307–3311, 1972.

    Article  CAS  Google Scholar 

  19. Jaffe, L.J. and Nuccitelli, R., An ultra-sensitive vibrating probe for measuring steady extracellular currents. J. Cell Biol. 56: 614–628, 1974.

    Article  Google Scholar 

  20. Kochian, L.V. and Lucas, W.J., Potassium transport in corn roots. I: Resolution of kinetics into a saturable and linear component. Plant Physiol. 70: 1723–1731, 1982.

    Article  PubMed  CAS  Google Scholar 

  21. Kochian, L.V. and Lucas, W.J., A re-evaluation of the carrierkinetic approach to ion transport in roots of higher plants. What’s New in Plant Physiol. 13: 45–48, 1982.

    Google Scholar 

  22. Kochian, L.V. and Lucas, W.J., Potassium transport in corn roots. II: The significance of the root periphery. Plant Physiol. 73: 208–215, 1983.

    Article  PubMed  CAS  Google Scholar 

  23. Koryta, J., Ion-Selective Electrodes, Cambridge University Press Cambridge, 1975.

    Google Scholar 

  24. Leonard, R.T. and Hodges, T.K., Characterization of plasma membrane-associated adenosine triphosphatase activity of oat roots. Plant Physiol. 52: 6–12, 1973.

    Article  PubMed  CAS  Google Scholar 

  25. Leonard, R.T. and Hotchkiss, C.W., Cation-stimulated adenosine triphosphatase activity and cation transport in corn roots. Plant Physiol. 58: 331–335, 1976.

    Article  PubMed  CAS  Google Scholar 

  26. Leonard, R.T. and Hotchkiss, C.W., Plasma membrane-associated adenosine triphosphatase activity of isolated cortex and stele from corn roots. Plant Physiol. 61: 175–179, 1978.

    Article  PubMed  CAS  Google Scholar 

  27. Leonard, R.T., Hansen, D. and Hodges, T.K., Membrane-bound adenosine triphosphatase activities of oat roots. Plant Physiol. 51: 749–754, 1973.

    Article  PubMed  CAS  Google Scholar 

  28. Lin, W. Potassium and phosphate uptake in corn roots. Further evidence for an electrogenic H+/K+ exchanger and an 0H-/Pi antiporter. Plant Physiol. 63: 952–955, 1979.

    Google Scholar 

  29. Lucas, W.J., Analysis of the diffusion symmetry developed by the alkaline and acid bands which form at the surface of Chara corallina cells. J. Exp. Botany 26: 271–286, 1975.

    Article  CAS  Google Scholar 

  30. Lucas, W.J., Mechanism of acquisition of exogenous bicarbonate by internodal cells of Chara corallina. Planta 156: 181–192, 1982.

    Article  CAS  Google Scholar 

  31. Lucas, W.J., Ferrier, J.M., and Dainty, J., Plasmalemma transport of OH- in Chara corallina: dynamics of activation and deactivation. J. Membrane Biol. 32: 49–73, 1977.

    Article  CAS  Google Scholar 

  32. Lucas, W.J., Keifer, D.W. and Sanders, D., Bicarbonate transport in Chara corallina: evidence for cotransport of HCO3 with H+. J. Membrane Biol. 73: 263–274, 1983.

    Article  CAS  Google Scholar 

  33. Lucas, W.J. and Nuccitelli, R., HCO3 and OH- transport across the plasmalemma of Chara: spatial resolution obtained using extracellular vibrating probe. Planta 150: 120–131, 1980.

    Article  CAS  Google Scholar 

  34. Luttge, U. and Pitman, M.G., Transport in Plants. II. Part B. Tissues and Organs Encyclopedia of Plant Physiology, N.S. Vol. 2, Part B, Springer-Verlag, Berlin, Heidelberg, NY, 1976.

    Google Scholar 

  35. Mandala, S., Mettler, I.J. and Taiz, L., Localization of the proton pump of corn coleoptile microsomal membranes by density gradient centrifugation. Plant Physiol. 70: 1743–1747, 1982.

    Article  PubMed  CAS  Google Scholar 

  36. Meier, P.C., Ammann, D., Morf, W.E. and Simon, W., Liquidmembrane ion-selective electrodes and their biomedical applications. In: Medical and Biological Applications of Electrochemical Devices (J. Koryta, ed.) John Wiley & Sons, NY, pp. 13–91 1930.

    Google Scholar 

  37. Mettler, I.J., Mandala, S. and Taiz, L., Characterization of in vitro proton pumping by microsomal vesicles isolated from corn coleoptiles. Plant Physiol. 70: 1738–1742, 1982.

    Article  PubMed  CAS  Google Scholar 

  38. Moody, G.J. and Thomas, J.D.R., Selective Ion Sensitive Electrodes, Merrow Publishing Co. Watford, 1971.

    Google Scholar 

  39. Nicolsky, B.P., Theory of the glass electrode. I. Theoret. J. Phys. Chem. (USSR) 10: 495–503, 1937.

    Google Scholar 

  40. Nissen, P. and Nissen O., Validity of the multiphasic concept of ion absorption in plants. Physiologia Plantarum 57: 47–56, 1983.

    Article  CAS  Google Scholar 

  41. Nuccitelli, R., Transcellular ion currents: signals and effectors of cell polarity. Modern Cell Biol. 2: 451–481, 1983.

    CAS  Google Scholar 

  42. Oehme, M. and Simon, W., Microelectrode for potassium ions based on a neutral carrier and comparison of its characteristics with a cation exchanger sensor. Analy. Chimica Acta 86: 21–25, 1976.

    Article  CAS  Google Scholar 

  43. O’Neill, S.D. and Spanswick, R.M., Solubolization and reconstruction of a vanadate-sensitive H+-ATPase from the plasma membrane of Beta vulgaris. J. Membrane Biol. 79: 231–243, 1984

    Article  Google Scholar 

  44. O’Neill, S.D. and Spanswick, R.M., Characterization of native and reconstituted H+-ATPase from the plasma membreane of Beta vulgaris. J. Membrane Biol. 79: 245–256, 1984.

    Article  Google Scholar 

  45. Pitman, M.G., Ion uptake by plant roots. In: Transport in Plants II. Part B. Tissues and Organs (U. Luttge and M.G. Pitman, eds.) Encyclopedia of Plant Physiology, N.S. Vol. 2, Part B., Springer-Verlag, Berlin, pp. 95–128, 1976.

    Google Scholar 

  46. Purves, R.D., Microelectrode Methods for Intracellular Recording and Ionophoresis, Biological Techniques Series, Academic Press, NY, 1981.

    Google Scholar 

  47. Schulthess, P., Shijo, Y., Pham, H.V., Pretsch, E., Ammann, D. and Simon, W., A hydrogen ion-selective liquid-membrane electrode based on trindodecylamine as neutral carrier. Analy. Chemica Acta 131: 111–116, 1981.

    Article  CAS  Google Scholar 

  48. Scott, B.I.H., Feedback-induced oscillations of five-minute period in the electric field of the bean root. Ann. NY Acad. Sci. 98: 890–900, 1962.

    Article  PubMed  CAS  Google Scholar 

  49. Scott, B.I.H. and Martin, D.W., Bioelectric fields of bean roots and their relation to salt accumulation. Australian J. Biol. Sci. 15: 83–100, 1962.

    CAS  Google Scholar 

  50. Stout, R.G. and Cleland, R.E., Evidence for a Cl--stimulated MgATPase proton pump in oat root membranes. Plant Physiol. 69: 798–803, 1982.

    Article  PubMed  CAS  Google Scholar 

  51. Sze, H., Nigericin-stimulated ATPase activity in microsomal vesicles of tobacco callus. Proc. Natl. Acad. Sci. USA 77: 5904–5908, 1980.

    Article  PubMed  CAS  Google Scholar 

  52. Sze, H. and Churchill, K.A., Mg2+/KCl-ATPase of plant plasma membranes is an electrogenic pump. Proc. Natl. Acad. Sci. USA 78: 5578–5582, 1981.

    Article  PubMed  CAS  Google Scholar 

  53. Sze, H. and Hodges, T.K., Selectivity of alkali cation influx across the plasma membrane of oat roots. Cation specificity of the plasma membrane ATPase. Plant Physiol. 59: 641–646, 1977.

    Article  PubMed  CAS  Google Scholar 

  54. Thomas, R.C., Ion-sensitive Intracellular Microelectrodes. How to Make and Use Them, Biological Techniques Series, Academic Press, NY, 78.

    Google Scholar 

  55. Vakhmistrov, D.B., On the function of the apparent free space in plant roots. A study of the absorbing power of the epidermis and cortical cells in barley roots. Soviet Plant Physiol. 14: 103–107, 1967.

    Google Scholar 

  56. Van Iren, F. and Boers-van der Sluijs, P., Symplasmic and apoplasmic radial ion transport in plant roots. Planta 148: 130–137, 1980.

    Article  Google Scholar 

  57. Weisenseel, M.H., Dorn, A. and Jaffe, L.F., Natural H+ currents traverse growing roots and root hairs of barley (Hordeum vulgare L.). Plant Physiol. 64: 512–518, 1979.

    Article  PubMed  CAS  Google Scholar 

  58. Wuhrmann, P., Ineichen, H., Riesen-Willi, U. and Lezzi, M., Change in nuclear potassium electrochemical activity and puffing of potassium-sensitive salivary chromosome regions during Chironomus development. Proc. Natl. Acad. Sci. USA 76: 806–808, 1979.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Lucas, W.J., Kochian, L.V. (1986). Ion Transport Processes in Corn Roots: An Approach Utilizing Microelectrode Techniques. In: Gensler, W.G. (eds) Advanced Agricultural Instrumentation. NATO ASI Series, vol 111. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4404-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4404-6_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8459-8

  • Online ISBN: 978-94-009-4404-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics