Skip to main content

Macro and Micromixing Phenomena in Chemical Reactors

  • Chapter
Chemical Reactor Design and Technology

Part of the book series: NATO ASI Series ((NSSE,volume 110))

Abstract

Attempts to describe mixing in chemical reactors is one of the most striking examples which show that Chemical Reaction Engineering is not a mere combination of chemistry and applied physics, but an original scientific discipline which has developed its own concepts .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Danckwerts, P.V Continuous flow systems. Distribution of residence time, Chem. Eng. Sci., 2 (1953), 1

    CAS  Google Scholar 

  2. Levenspiel, O. Chemical Reaction Engineering, Wiley (1972)

    Google Scholar 

  3. Wen, C.Y and L.T. Fan. Models for flow systems and chemical reactors, Dekker (1975)

    Google Scholar 

  4. Nauman, E.B and B.A. Buffham. Mixing in continuous flow systems, Wiley (1983)

    Google Scholar 

  5. Dudukovic, M.P Tracer methods in chemical reactors (this book).

    Google Scholar 

  6. Villermaux, J. Genie de la Réaction Chimique. Conception et fonctionnement des reacteurs, Technique et Documentation, Paris (1982)

    Google Scholar 

  7. Van Swaaij, W.P.M and F.J. Zuiderweg. Investigation of ozone decomposition in fluidized beds on the basis of a two-phase model. Proceed fifth europ. second Int. Symp. Chem. React. Eng. Amsterdam, B-9–25 (1972)

    Google Scholar 

  8. De Vries, R.J, W.P.M. Van Swaaij, C. Mantovani and Heijkoop. Design criteria and performance of the commercial reactor for the Shell chlorine process. Ibid. B-9–59

    Google Scholar 

  9. Danckwerts, P.V The definition and measurement of some characteristics of mixtures. Appl. Sci. Research, 3 (1952), 279–298

    Google Scholar 

  10. Zwietering, T.N The degree of mixing in continuous flow systems. Chem. Eng. Sci. 11 (1959), 1–15

    Article  CAS  Google Scholar 

  11. Spencer, J.L, R. Lunt and S.A. Leshaw. Identification of micromixing mechanisms in flow reactors: transient inputs of reactive tracers. Ind. Eng. Chem. Fundam. 19 (1980), 135–141

    Article  CAS  Google Scholar 

  12. Weinstein, H. and J. Adler, Micromixing effects in continuous chemical reactors. Chem. Eng. Sci. 22 (1967), 65–75

    Article  CAS  Google Scholar 

  13. Villermaux, J. and A. Zoulalian. Etat de melange dans un réacteur continu. A propos d‘un modèle de Weinstein et Adler. Chem. Eng. Sci. 24 (1969), 1513–1517

    Article  CAS  Google Scholar 

  14. Ng, D.Y.C and D.W.T. Rippin. The effect of incomplete mixing on conversion in homogeneous reactions. Proceed 3rd Europ. Symp. Chem. React. Eng., Amsterdam, 161–165, Pergamon Press (1965)

    Google Scholar 

  15. Plasari, E., R. David and J. Villermaux. Micromixing phenomena in continuous stirred reactors using a Michaelis-Menten reaction in the liquid phase. Chem. React. Eng. Houston 1978, ACS Symp. Series, 65, 126–139

    Google Scholar 

  16. Valderrama, J.L and A. Gordon. Mixing effects on homogeneous p-order reactions. A two-parameter model for partial segregation. Chem. Eng. Sci. 34 (1979), 1097–1103

    Article  CAS  Google Scholar 

  17. Ibid. A two parameter model for partial segregation. Application to flow reactors with pre-and unmixed feed. 36 (1981), 839–844

    Google Scholar 

  18. Villermaux J. Mixing in chemical reactors, ACS symposium Series, 226 (1983), 135–186

    Article  CAS  Google Scholar 

  19. Ritchie, B.W and A.H. Tobgy. A three-environment micromixing model for chemical reactors with arbitrary separate feedstreams. The Chem. Eng. Journal, 17 (1979), 173–182

    CAS  Google Scholar 

  20. Ritchie, B.W Simulating the effects of mixing on the performance of unpremixed flow chemical reactors. The Canad. J. of Chem. Eng. 58 (1980), 626–633

    Article  CAS  Google Scholar 

  21. Mehta and Tarbel. Four environment model of mixing and chemical reaction. A.I.Ch.E. J. 29(1983), 320

    CAS  Google Scholar 

  22. Spencer, J.L, R. Lunt and S.A. Leshaw. Identification of micromixing mechanisms in flow reactors: transient inputs of reactive tracers, Ind. Eng. Chem. Fundam. 19 (1980) 135–141

    Article  CAS  Google Scholar 

  23. Spencer, J.L and R.R. Lunt. Experimental characterization of mixing mechanisms in flow reactors using reactive tracers. Ind. Eng. Chem. Fundam. 19 (1980), 142–148

    Article  CAS  Google Scholar 

  24. Curl, R.L Dispersed phase mixing theory and effects in simple reactors. A.I.Ch.E. J. 9 (1963), 175

    CAS  Google Scholar 

  25. Spielman, L.A and O. Levenspiel. A Monte-Carlo treatment for reacting and coalescing dispersed phase systems. Chem. Eng. Sci. 20 (1965), 247–254

    Article  CAS  Google Scholar 

  26. Kattan, A. and R.J. Adler. A conceptual framework for mixing in continuous chemical reactors. Chem. Eng. Sci. 27 (1972), 247–254

    Article  Google Scholar 

  27. Treleaven, C.R and A.H. Tobgy. Monte-Carlo methods of simulating micromixing in chemical reactors. Chem. Eng. Sci. 27 (1972) 1497–1513

    Article  CAS  Google Scholar 

  28. Villermaux, J. and R. David. Recent advances in the understanding of micromixing phenomena in stirred reactors. Chem. Eng. Comm. 21 (1983), 105–122

    Article  CAS  Google Scholar 

  29. Beek Jr, J. and R.S. Miller. Turbulent transport in chemical reactors. Chem. Eng. Prog. Symp. Series, 55 (1959), 23–28

    Google Scholar 

  30. Ottino, J.M Lamellar mixing models for structured chemical reactions and their relationship to statistical models: macro and micromixing and the problem of averages. Chem. Eng. Sci., 35 (1980), 1377–1391

    Article  CAS  Google Scholar 

  31. Bourne, J.R Micromixing revisited. Proceed. ISCRE 8, Edimburgh 1984 I. Chem. Symposium Series 87

    Google Scholar 

  32. Ranz, W.E Applications of a stretch model to Mixing. Diffusion and reaction in laminar and turbulent flows. A.I.Ch.E. J. 25 (1979), 41–47

    CAS  Google Scholar 

  33. Bourne, J.R and S. Rohani. Mixing and fast chemical reaction. VII Deforming Reaction zone model for the CSTR. Chem. Eng. Sci. 38 (1983), 911

    Article  CAS  Google Scholar 

  34. Barthole, J.P, R. David and J. Villermaux. A new chemical method for the sutdy of local micromixing conditions in industrial stirred tanks. ACS Symp. Series, 196 (1982), 545

    Article  CAS  Google Scholar 

  35. Bourne, J.R, F. Kozicki and P. Rys. Mixing and fast chemical reactions. I. Test reactions to determine segregation. Chem. Eng. Sci. 36 (1981), 1643–1648

    Article  CAS  Google Scholar 

  36. Khang, S.J and O. Levenspiel. New scale-up and design method for stirred agitated batch mixing vessels. Chem. Eng. Sci. 31 (1976), 569–577

    Article  CAS  Google Scholar 

  37. Patterson, G.K Application of turbulence fundamentals to reactor modelling and scale-up. Chem. Eng. Commun. 8 (1981), 25–52

    Article  CAS  Google Scholar 

  38. Harvey, P.S and M. Greaves. Turbulent flow in an agitated vessel. I: Predictive model. Trans. I. Chem. E. 60 (1982), 195

    CAS  Google Scholar 

  39. Ibid. Turbulent flow in an agitated vessel. II: numerical solution and model predictions. 60 (1982), 201

    Google Scholar 

  40. Mann, R. Gas liquid contacting in mixing vessels. I. Chem. E. Industrial research fellowship report, 1983

    Google Scholar 

  41. Villermaux, J. Micromixing phenomena in stirred reactors. Encyclopedia of Fluid Mechanics (to be published)

    Google Scholar 

  42. Bourne, J.R, P. Rys and K. Suter. Mixing effects in the bromination of resorcin. Chem. Eng, Sci. 32 (1977), 711–716

    Article  CAS  Google Scholar 

  43. Baldyga, J. and J.R. Bourne. A fluid mechanical approach to turbulent mixing and chemical reaction. Part III: computational and experimental results for the new micromixing model. Chem. Eng. Comm. 28 (1984), 259–281

    Article  CAS  Google Scholar 

  44. Villermaux, J., M. Pons and L. Blavier. Comparison of partial segregation models for the determination of kinetic constants in a high pressure polyethylene reactor. I. Chem. E. Symposium Series, 87 (1984), 553–560

    CAS  Google Scholar 

  45. Villermaux, J., L. Blavier and M. Pons. Polymer Reaction Engineering (Reichert K.H. and Geiseler W. editors) Berlin (1983), 1 Carl Hanser Verlag.

    Google Scholar 

  46. Garside, J. and N.S. Tavare. Crystallization and Chemical Reaction Engineering. Proceed. ISCRE 8. Edimburgh, 1984. I. Chem. Symposium Series 87

    Google Scholar 

  47. Pohorecki, R. and J. Baldyga. The use of a new model of micromixing for determination of crystal size in precipitation. Chem. Eng. Sci. 38 (1983), 79–83

    Article  CAS  Google Scholar 

  48. Villermaux, J. to be published

    Google Scholar 

  49. Zwietering, Th.N. A backmixing model describing micromixing in single phase continuous-flow systems. Chem. Eng. Sci. 39 (1984) 1765

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Villermaux, J. (1986). Macro and Micromixing Phenomena in Chemical Reactors. In: de Lasa, H.I. (eds) Chemical Reactor Design and Technology. NATO ASI Series, vol 110. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4400-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4400-8_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8457-4

  • Online ISBN: 978-94-009-4400-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics