Skip to main content

Tracer Methods in Chemical Reactors. Techniques and Applications

  • Chapter
Chemical Reactor Design and Technology

Part of the book series: NATO ASI Series ((NSSE,volume 110))

Abstract

Tracer methods are encountered in many areas of science and engineering. The diversity of their uses is illustrated by measurement of blood flow and capillary permeability of the microcirculation in medicine and by flow visualization in channels and around airplane wings in mechanical and aerospace engineering. Other applications are flow and transport measurements in rivers in hydrology, transport measurements of pollutants in soils in civil engineering, and measurements of spreading of plumes in the atmosphere in environmental engineering. Additional uses involve identification of reaction mechanisms of chemical and catalytic reactions, measurement of diffusion rates, etc. All these methods rely on perturbing the system under investigation and monitoring the system’s response to such perturbations. This response is then interpreted. Some conclusions can be obtained on a model-free basis, others are model dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Danckwerts, P. V, Continuous Flow Systems: Distribution of Residence Times. Chem. Eng. Science 2 (1953) 1.

    Article  CAS  Google Scholar 

  2. Levenspiel, O., Chemical Reaction Engineering (New York, Wiley, 2nd ed., 1972).

    Google Scholar 

  3. Froment, G. F and K. B. Bischoff. Chemical Reactor Analysis and Design (New York, Wiley, 1979).

    Google Scholar 

  4. Nauman, E. B and B. A. Buffham. Mixing in Continuous Flow Systems (New York, Wiley, 1983).

    Google Scholar 

  5. Aris, R. The Scope of R.T.D. Theory, Residence Time Distribution Theory in Chemical Engineering. (Petho, A. and R. D. Noble, eds., Weinheim, Verlag-Chemie, 1982). 177

    Google Scholar 

  6. Aris, R. Residence Time Distribution with Many Reactions and in Several Environments, Residence Time Distribution Theory in Chemical Engineering (Petho, A. and R. D. Noble, eds., Weinheim, Verlag-Chemie, 1982).

    Google Scholar 

  7. Brodkey, R. S Fundamentals of Turbulent Motion, Mixing and Kinetics. Chem. Eng. Communications 8 (1981) 1.

    Article  CAS  Google Scholar 

  8. Bourne, J. R Micromixing Revisited, ISCRE 8 (Edinburgh, September, 1984).

    Google Scholar 

  9. Nauman, E. B Residence Time Distributions and Micromixing. Chem. Eng. Communications 8 (1981) 53.

    Article  Google Scholar 

  10. Patterson, G. K Application of Turbulence Fundamentals to Reactor Modelling and Scaleup. Chem. Eng. Communications 8 (1981) 25.

    Article  CAS  Google Scholar 

  11. Shinnar, R. Tracer Experiments in Chemical Reactor Design, Levich Birthday Conference on Physical Chemistry and Hydrodynamics (Oxford, July, 1977).

    Google Scholar 

  12. Shinnar, R. Use of Residence Time and Contact Time Distributions in Reactor Design, Chemical Reaction Engineering Handbook (Carberry, J. J. and A. Varma, eds., New York, Marcel Dekker, 1985).

    Google Scholar 

  13. Villermaux, J. Mixing in Chemical Reactors. Am. Chem. Soc. Symp. Series 226 (1983) 135.

    CAS  Google Scholar 

  14. Waldram, S. P Nonideal Flow in Chemical Reactors, Comprehensive Chemical Kinetics, Vol. 23, Ch. 6 (G. H. Bamford, et. al. eds., Elsevier, Amsterdam, 1985).

    Google Scholar 

  15. Brodkey, R. S, ed. Turbulence in Mixing Operations: Theory and Applications to Mixing and Reaction (New York, Academic Press, 1975).

    Google Scholar 

  16. Hinze, J. O Turbulence (New York, McGraw Hill, 1975).

    Google Scholar 

  17. Danckwerts, P. V Tracers, Residence Times, Mixing and Dispersion. Lecture Notes (Pittsburgh, University of Pittsburgh, 1976).

    Google Scholar 

  18. Gonzales-Fernandez, J. M Theory of the Measurement of the Dispersion of an Indicator in Indicator-Dilution Studies. Circulation Research 10 (1962) 409.

    Google Scholar 

  19. Levenspiel, O. and J. C. R. Turner. The Interpretation of Residence Time Experiments. Chem. Eng. Science 25 (1970) 1605.

    Article  CAS  Google Scholar 

  20. Turner, J. C. R The Interpretation of Residence-Time Measurements in Systems with and without Mixing. Chem. Eng. Science 26 (1971) 549.

    Article  CAS  Google Scholar 

  21. Buffham, B. A On the Residence Time Distribution for a System with Velocity Profiles in its Connection with the Environment. Chem. Eng. Science 27 (1972) 987.

    Article  CAS  Google Scholar 

  22. Villermaux, J Nomenclature and Symbols Recommended by the Working Party on Chemical Reaction Engineering of the E. F. Ch. E., Chem. Eng. Science 35 (1980) 2065.

    Article  Google Scholar 

  23. Sheppard, C. W Basic Principles of the Tracer Method (New York, Wiley, 1962).

    Google Scholar 

  24. Jacquez, J. A Compartmental Analysis in Biology and Medicine (Amsterdam, Elsevier, 1972).

    Google Scholar 

  25. Lassen, N. and W. Perl. Tracer Kinetic Methods in Medical Physiology (New York, Raven, 1979).

    Google Scholar 

  26. Buffham, B. A Internal and External Residence Time Distributions. Chem. Eng. Communications 22 (1983) 105.

    Article  CAS  Google Scholar 

  27. Ritchie, B. W and A. H. Tobgy. Residence Time Analysis in Systems Having Many Connections with their Environment. Ind. Eng. Chem. Fundamentals 17 (1978) 287.

    Article  CAS  Google Scholar 

  28. Buffham, B. A and H. W. Kropholler. The Washout Curve, Residence Time Distribution and F Curve in Tracer Kinetics. Math. Biosciences 6 (1970) 179.

    Article  Google Scholar 

  29. Zhuang, Z. Model for Flow System Having Multiple Inlet and Outlet Streams. Scientia Simica 24 (1981) 626.

    Google Scholar 

  30. Sherman, H. On the Theory of Indicator-Dilution Methods Under Varying Blood-Flow Conditions. Bull. Math. Biphysics 22 (1960) 417.

    Article  Google Scholar 

  31. Krambeck, F. J., R. Shinnar and S. Katz. Interpretation of Tracer Experiments in Systems with Fluctuating Throughput. Ind. Eng. Chem. Fundamentals 8 (1969) 431.

    Article  CAS  Google Scholar 

  32. Krambeck, F. J, R. Shinnar and S. Katz. Stochastic Models for Chemical Reactors. Ind. Eng. Chem. Fundamentals 6 (1967) 276.

    Article  CAS  Google Scholar 

  33. Cussler, E. L Diffusion-Mass Transfer in Fluid Systems (Cambridge, Cambridge University Press, 1984).

    Google Scholar 

  34. Bischoff, K. B and E. A. McCracken. Tracer Tests in Flow Systems. Ind. Eng. Chemistry 58 (1966) 18.

    Google Scholar 

  35. Merzkirch, W. Flow Visualization (New York, Academic Press, 1974).

    Google Scholar 

  36. Wang, C. H and D. L. Willis. Radiotracer Methodology in Biological Science (Englewood Cliffs, Prentice Hall, 1965).

    Google Scholar 

  37. Burton, B. S. Take a Look at Nuclear Gauges. Instr. Control Systems. December (1976) 41.

    Google Scholar 

  38. Hines, D. B Some Applications of Radioisotopes in Chemical and Engineering Research, AIChE One Day Symposium, St. Louis, April 1978.

    Google Scholar 

  39. Zwietering, T. N The Degree of Mixing in Continuous Flow Systems. Chem. Eng. Science 11 (1959) 1.

    CAS  Google Scholar 

  40. Spalding, D. B. A Note on Mean Residence Times in Steady Flows of Arbitrary Complexity. Chem. Eng. Science 9 (1958) 74.

    Article  CAS  Google Scholar 

  41. Stewart, G. N The Pulmonary Circulation Time, the Quantity of Blood in the Lungs and the Output of the Heart. Am. J. Physiology 58 (1921) 20.

    Google Scholar 

  42. Hamilton, W. F, J. W. Moore, J. M. Kinsman and R. G. Spurling. Simultaneous Determination of the Pulmonary and Systematic Circulation Times in Man and of a Figure Related to the Cardiac Output. Am. J. Physiology 84 (1928) 84.

    Google Scholar 

  43. Curl, R. and M. L. McMillan. Accuracy in Residence Time Measurements. AIChE J. 12 (1966) 819.

    Article  CAS  Google Scholar 

  44. DudukoviĈ, M. P Tracer Analysis of the Microcirculation (Ph.D. Thesis, Chicago, IIT, 1972).

    Google Scholar 

  45. Hines, D. B Chlor-alkali Plant Mercury Inventory with Mercury-203 Radioisotope. Proc. 15th Meeting Chlorine Plant Managers (The Chlorine Institute, Inc., February, 1972), p.12.

    Google Scholar 

  46. DudukoviĈ, M. P and R. M. Felder. Mixing Effects in Chemical Reactors. AIChE Modular Instruction, Series E. Kinetics, Vol. 4 (New York, AIChE, 1983).

    Google Scholar 

  47. Levich, V. G, V. S. Markin and Y. A. Chrismadzkev. On Hydrodynamic Mixing in a Model of a Porous Medium with Stagnant Zones. Chem. Eng. Science 22 (1967) 1357.

    Article  CAS  Google Scholar 

  48. Mills, P. L and M. P. DudukoviĈ. Evaluation of Liquid-Solid Contacting in Trickle-Bed Reactors by Tracer Methods. AIChE J. 27 (198k) 893; AIChE J 28 (1982) 526.

    Article  Google Scholar 

  49. Mills, P. L and M. P. DudukoviĈ. Modified Differential Refractometer for Continuous Liquid-Phase Residence Time Distribution Studies. Ind. Eng. Chem. Fundamentals 18 (1979) 292.

    Article  CAS  Google Scholar 

  50. Mills, P. L Catalyst Effectiveness and Solid-liquid Contacting in Trickle-Bed Reactors (D.Sc. Thesis, St. Louis, Washington University, May 1980).

    Google Scholar 

  51. Lapidus, L. Flow Distribution and Diffusion in Fixed-Bed Two-Phase Reactors. Ind. Eng. Chemistry 49 (1957) 1000.

    Article  CAS  Google Scholar 

  52. Schiesser, W. E and L. Lapidus. Further Studies of Fluid Flow and Mass Transfer in Trickle-Beds. AIChE J. 7 (1961) 163.

    Article  CAS  Google Scholar 

  53. Rothfeld, L. B and J. L. Ralph. Equivalence of Pulse and Step Residence Time Measurements in a Trickle-Phase Bed. AIChE J. 9 (1963) 852.

    Article  CAS  Google Scholar 

  54. Awasthi, R. C and K. Vasudeva. On Mean Residence Times in Flow Systems. Chem. Eng. Science 38 (1983) 313.

    Article  CAS  Google Scholar 

  55. Naor, P. and R. Shinnar. Representation and Evaluation of Residence Time Distributions. Ind. Eng. Chem. Fundamentals 2 (1963) 278.

    Article  CAS  Google Scholar 

  56. Nauman, E. B Nonisothermal Reactors: Theory and Applications of Thermal Time Distribution. Chem. Eng. Science 32 (1977) 359.

    Article  CAS  Google Scholar 

  57. Levenspiel, O. The Chemical Reactor Omnibook (Corvallis, Oregon State University Bookstores, 1979).

    Google Scholar 

  58. Wen, C. Y and L. T. Fan. Models for Flow Systems and Chemical Reactors (New York, Marcel Dekker, 1975).

    Google Scholar 

  59. Cholette, A. and L. Cloutier. Mixing Efficiency Determination for Continuous Flow Systems. Can. J. Chem. Engineering, 37 (1953) 105.

    Article  Google Scholar 

  60. Nagata, S. Mixing: Principles and Applications (New York, Halsted Press, 1975).

    Google Scholar 

  61. Corrigan, T. E and W. O. Beavers. Continuous Stirred Tank Reactors. (1968) 1003. Dead Space Interaction in Chem. Eng. Science 23

    CAS  Google Scholar 

  62. Norwood, K. W and A. B. Metzner. Flow Patterns and Mixing Rates in Agitated Vessels. AIChE J. 6 (1960) 432.

    Article  CAS  Google Scholar 

  63. Gibilaro, L. G The Recycle Flow Mixing Model. Chem. Eng. Science 26 (1971) 299.

    CAS  Google Scholar 

  64. Van de Vusse, J. G A New Model for the Stirred Tank. Chem. Eng. Science 17 (1962) 507.

    Article  Google Scholar 

  65. Moo-Young, M. and K. W. Chan. Non-Ideal Flow Parameters for Viscous Fluids Flowing Through Stirred Tanks. Can. J. Chem. Engineering 49 (1971) 187.

    Article  CAS  Google Scholar 

  66. Holmes, D. B, R. M. Voncken and J. A. Dekker. Fluid Flow in Turbine-Stirred Baffled Tanks. I. Circulation Time. Chem. Eng. Science 19 (1964) 201.

    Article  CAS  Google Scholar 

  67. Voncken, R. M, D. B. Holmes and H. W. den Hartog. Fluid Flow in Turbine-Stirred Baffled Tanks. II. Dispersion During Circulation. Chem. Eng. Science 19 (1964) 209.

    Article  CAS  Google Scholar 

  68. Khang, S. J and O. Levenspiel. New Scaleup and Design Method for Stirrer Agitated Batch Mixing Vessels. Chem. Eng. Science 31 (1976) 569.

    Article  CAS  Google Scholar 

  69. Rippin, D. W. T The Recycle Reactor as a Model of Incomplete Mixing. Ind. Eng. Chem. Fundamentals 6 (1967) 488.

    Article  CAS  Google Scholar 

  70. Fu, B., H. Weinstein, B. Bernstein and A. B. Shaffer. Residence Time Distributions of Recycle Systems — Integral Equation Formulation. Ind. Eng. Chem. Process Design Development 10 (1971) 501.

    Article  Google Scholar 

  71. Buffham, B. A and E. B. Nauman. On the Limiting Form of the Residence Time Distribution for a Constant Volume Recycle System. Chem. Eng. Science 30 (1975) 1519.

    Article  CAS  Google Scholar 

  72. Nauman, E. B and B. A. Buffham. Limiting Forms of the Residence Time Distribution for Recycle Systems. Chem. Eng. Science 32 (1977) 1233.

    Article  CAS  Google Scholar 

  73. Nauman, E. B and B. A. Buffham. A Note on Residence Time Distributions in Recycle Systems. Chem. Eng. Science 34 (1979) 1057.

    Article  CAS  Google Scholar 

  74. Rubinovitch, M. and U. Mann. The Limiting Residence Time Distribution of Continuous Recycle Systems. Chem. Eng. Science. 34 (1979) 1309.

    Article  CAS  Google Scholar 

  75. Buffham, B. A and E. B. Nauman. Residence-Time Distribution at High Recycle Ratios. Chem. Eng. Science 39 (1984) 841.

    Article  CAS  Google Scholar 

  76. Leitman, R. H and E. N. Ziegler. Stirred Tank Reactor Studies: Part I: Mixing Parameters. Chem. Eng. Journal 2 (1971) 252.

    Article  CAS  Google Scholar 

  77. Leitman, R. H and E. N. Ziegler. Stirred Tank Reactor Studies: Part II. Conversion Models. Chem. Eng. Journal 3 (1972) 245.

    Article  CAS  Google Scholar 

  78. Hanley, T. R and R. A. Mischke. A Mixing Model for a Continuous Flow Stirred Tank Reactor. Ind. Eng. Chem. Fundamentals 17 (1978) 51.

    Article  CAS  Google Scholar 

  79. Spencer, J. L, R. R. Lunt and S. A. Leshaw. Identification of Micromixing Mechanisms in Flow Reactors: Transient Inputs of Reactive Tracers. Ind. Eng. Chem. Fundamentals 19 (1980) 135.

    Article  CAS  Google Scholar 

  80. Spencer, J. L and R. R. Lunt. Experimental Characterization of Mixing Mechanisms in Flow Reactors Using Reactive Tracers. Ind. Eng. Chem. Fundamentals 19 (1980) 142.

    Article  CAS  Google Scholar 

  81. Lintz, H. G and W. Weber. The Study of Mixing in a Continuous Stirred Tank Reactor Using an Autocatalytic Reaction. Chem. Eng. Science 35 (1980) 203.

    Article  CAS  Google Scholar 

  82. Denbigh, K. G, N. Dombrowski, A. J. Kisiel and E. R. Place. The Use of the “Time Reaction” in Residence Time Studies. Chem. Eng. Science 17 (1962) 573.

    Article  Google Scholar 

  83. Danckwerts, P. V and R. A. M. Wilson. Flow Visualization by Means of a Time Reaction. J. Fluid Mechanics 16 (1963) 412.

    Article  Google Scholar 

  84. Castellana, F. S, M. I. Friedman and J. L. Spencer. Characterization of Mixing in Reactor Systems Through Analysis of Regional Tracer Dilution Data Obtained with a Gamma Camera. AIChE Journal 30 (1984) 207.

    Article  CAS  Google Scholar 

  85. Mecklenburgh, J. C and S. Hartland. The Theory of Backmixing. (London, Wiley, 1975).

    Google Scholar 

  86. Shah, Y. T, G. J. Stiegel and M. M. Sharma. Backmixing in Gas-Liquid Reactors. AIChE Journal 24 (1978) 369.

    Article  CAS  Google Scholar 

  87. Klinkenberg, A. Distribution of Residence Times in a Cascade of Mixed Vessels with Backmixing. Ind. Eng. Chem. Fundamentals 5 (1966) 283.

    Article  CAS  Google Scholar 

  88. Hochman, J. M and J. R. McCord. Residence Time Distribution in Recycle Systems with Crossmixing. Chem. Eng. Science 25 (1970) 97.

    Article  CAS  Google Scholar 

  89. Bhavaraju, S. M, T. W. F. Russell and H. W. Blanch. The Design of Gas Sparged Devices for Viscous Liquid Systems. AIChE Journal 24 (1978) 454.

    Article  CAS  Google Scholar 

  90. Maruyama, T., N. Kamishima and T. Mizuchina. Investigation of Bubble Plume Mixing by Comparison with Liquid Jet Mixing. J. Chem. Eng. Japan 17 (1984) 120.

    Article  CAS  Google Scholar 

  91. Levenspiel, O. and K. B. Bischoff. Patterns of Flow in Chemical Process Vessels. Advances in Chemical Engineering, Vol. 4 (Drew, T. B., ed., New York, Academic Press, 1963).

    Google Scholar 

  92. Van der Laan, E. T Notes on the Diffusion-Type Model for the Longitudinal Mixing of Fluids in Flow. Chem. Eng. Science 7 (1958) 187.

    Article  Google Scholar 

  93. Wehner, J. F and R. H. Wilhelm. Boundary Conditions of Flow Reactor. Chem. Eng. Science 6 (1956) 89.

    Article  CAS  Google Scholar 

  94. Bischoff, K. B A Note on Boundary Conditions for Flow Reactors. Chem. Eng. Science 16 (1961) 131.

    Article  Google Scholar 

  95. Choi, C. Y and D. D. Perlmutter. A Unified Treatment of the Inlet Boundary Condition for Dispersive Flow Models. Chem. Eng. Science 31 (1976) 250.

    Article  CAS  Google Scholar 

  96. Parulekar, S. J and D. Ramkrishna. Analysis of Axially Dispersed Systems with General Boundary Conditions I, II and III. Chem. Eng. Science 39 (1984) 1571, 1581, 1599.

    Article  CAS  Google Scholar 

  97. Taylor, G. I Dispersion of Soluble Matter in Solvent Flowing Slowly through a Tube. Proc. Roy. Society (London) A219 (1953) 186.

    Google Scholar 

  98. Taylor, G. I The Dispersion of Matter in Turbulent Flow through a Pipe. Proc. Roy. Society (London) A223 (1954) 446.

    Google Scholar 

  99. Taylor, G. I Diffusion and Mass Transport in Tubes. Proc. Physical Society (London) B67 (1954) 857.

    Google Scholar 

  100. Aris, R. On the Dispersion of a Solute in a Fluid Flowing through a Tube. Proc. Roy. Society A235 (1956) 67.

    Google Scholar 

  101. Koch, D. L and J. F. Brady. Dispersion in Fixed Beds. J. Fluid Mechanics (1985). To appear.

    Google Scholar 

  102. Bischoff, K. B A Note on Gas Dispersion in Packed Beds. Chem. Eng. Science 24 (1969) 607.

    Article  CAS  Google Scholar 

  103. Deans, H. A A Mathematical Model for Dispersion in the Direction of Flow in Porous Media. Soc. Petro Eng. Journal 3 (1963) 49.

    Google Scholar 

  104. Hoogendorn, C. J and J. Lips. Axial Mixing of Liquid in Gas-Liquid Flow through Packed Beds. Can. J. Chem. Engineering 43 (1965) 125.

    Article  Google Scholar 

  105. Hochman, J. M and E. Effron. Two-Phase Countercurrent Downflow in Packed Beds. Ind. Eng. Chemistry Fundamentals, 8 (1969) 63.

    Article  CAS  Google Scholar 

  106. Buffham, B. A, L. G. Gibilaro and M. N. Rathor. A Probabilistic Time Delay Description of Flow in Packed Beds. AIChE Journal 16 (1970) 218.

    Article  CAS  Google Scholar 

  107. Rathor, M. N, L. G. Gibilaro and B. A. Buffham. The Hopping Model for Residence Time Distributions of Systems with Splitting and Merging Streams. AIChE Journal 31 (1985) 330.

    Article  Google Scholar 

  108. Schwartz, J. G and G. W. Roberts. An Evaluation of Models for Liquid Backmixing in. Trickle-Bed Reactors. Ind. Eng. Chem. Process Design Development 12 (1973) 262.

    Article  CAS  Google Scholar 

  109. Hinduja, M. J, S. Sundaresan and R. Jackson. A Cross-flow Model of Dispersion in Packed Bed Reactors. AIChE Journal 26 (1980) 274.

    Article  CAS  Google Scholar 

  110. Aris, R. Residence Times in Several Environments. Recent Advances in Engineering Analysis of Chemically Reacting Systems. (Doraiswamy, L. V., ed., New Delhi, Wiley Eastern, 1984).

    Google Scholar 

  111. Levenspiel, O. Private Communications. March, 1983.

    Google Scholar 

  112. Shinnar, R., P. Naor and S. Katz. Evaluation of Multiple Tracer Experiments. Chem. Eng. Science 27 (1972) 1627.

    Article  CAS  Google Scholar 

  113. Furusawa, T., M. Suzuki and J. M. Smith. Rate Parameters in Heterogeneous Catalysis by Pulse Techniques. Cat. Rev. Sci. Eng. 13 (1976) 43.

    Article  CAS  Google Scholar 

  114. McCoy, B. J Approximation of a Heterogeneous Chemical Reaction with a Fluid Phase Reaction. Chem. Eng. Science 39 (1984) 1524.

    Article  CAS  Google Scholar 

  115. Weinstein, H. and M. P. DudukoviĈ. Tracer Methods in the Circulation, Topics in Transport Phenomena, Ch. 4 (Gutfinger, C., ed., New York, Hemisphere Pub. Corp. 1975).

    Google Scholar 

  116. Miller, G. A and J. E. Bailey. Some New Results for Chromatographic Kinetics Studies. AIChE Journal 19 (1973) 876.

    Article  CAS  Google Scholar 

  117. Shinnar, R. and D. Rumschitzki. The Use of Residence Time Distributions in Heterogeneous Reactor Modeling, Design and Scaleup. 76th AIChE Annual Meeting, San Francisco, November 1984. paper 139b.

    Google Scholar 

  118. Mills, P. L, W. P. Wu and M. P. DudukoviĈ. Tracer Analysis in Systems with Two-Phase Flow. AIChE Journal 25 (1979) 885.

    Article  CAS  Google Scholar 

  119. Ramachandran, P. A and J. M. Smith. Dynamics of Three-Phase Slurry Reactors. Chem. Eng. Science 32 (1977) 873.

    Article  CAS  Google Scholar 

  120. Ramachandran, P. A and J. M. Smith. Dynamic Behavior of Trickle-Bed Reactors. Chem. Eng. Science 34 (1979) 75.

    Article  CAS  Google Scholar 

  121. Ramachandran, P. A and R. V. Chaudhari. Three-Phase Catalytic Reactors. (New York, Gordon & Breach, Pub., 1983).

    Google Scholar 

  122. Schwartz, J. G, E. Weger and M. P. DudukoviĈ. Liquid Holdup and Dispersion in Trickle-Bed Reactors. AIChE Journal 22 (1976) 953.

    Article  CAS  Google Scholar 

  123. DudukoviĈ, M. P and P. L. Mills. Contacting and Hydrodynamics in Trickle-Bed Reactors, Encyclopedia of Fluid Mechanics (Cheremisinoff, N. P., ed., New York, Gulf Publ. Corp., 1985).

    Google Scholar 

  124. Sicardi, S., G. Baldi and V. Specchia. Hydrodynamic Models for the Interpretation of the Liquid Flow in Trickle-Bed Reactors. Chem. Eng. Science 35 (1980) 1775.

    Article  CAS  Google Scholar 

  125. Eroglu, I. and T. Dogu. Dynamic Analysis of a Trickle-Bed Reactor by Moment Technique. Chem. Eng. Science 38 (1983) 801.

    Article  CAS  Google Scholar 

  126. Kan, K. M and P. F. Greenfield. Residence-Time Model for Trickle-Flow Reactors Incorporating Incomplete Mixing in Stagnant Regions. AIChE Journal 29 (1983) 123.

    Article  CAS  Google Scholar 

  127. Herskowitz, M. and J. M. Smith. Liquid Distribution in Trickle-Bed Reactors — 2. Tracer Studies. AIChE Journal 24 (1978) 450.

    Article  CAS  Google Scholar 

  128. Schwartz, J. G, E. Weger and M. P. DudukoviĈ. A New Tracer Method for Determination of Liquid-Solid Contacting Efficiency in Trickle-Bed Reactors. AIChE Journal 22 (1976) 894.

    Article  CAS  Google Scholar 

  129. Colombo, A. J, G. Baldi and S. Sicardi. Solid-Liquid Contacting Effectiveness in Trickle-Bed Reactors. Chem. Eng. Science 31 (1976) 1101.

    Article  CAS  Google Scholar 

  130. DudukoviĈ, M. P Catalyst Effectiveness Factor and Contacting Efficiency in Trickle-Bed Reactors. AIChE Journal 23 (1977) 940.

    Article  Google Scholar 

  131. Murphee, E. V, A. Voorhies, Jr. and F. X. Mayer. Application of Contacting Studies to the Analysis of Reactor Performance. Ind. Eng. Chem. Proc. Des. Develop. 3 (1964) 381.

    Article  Google Scholar 

  132. Argo, W. B and D. R. Cova. Longitudinal Mixing in Gas-Sparged Tubular Vessels. Ind. Eng. Chem. Process Des. Develop. 4 (1965) 352.

    Article  CAS  Google Scholar 

  133. Bischoff, K. B and J. B. Phillips. Longitudinal Mixing in Orifice Plate Gas-Liquid Reactors. Ind. Eng. Chem. Process Des. Develop. 5 (1966) 416.

    Article  CAS  Google Scholar 

  134. Reith, T., S. Renken and B. A. Israel. Gas Holdup and Axial Mixing in Fluid Phase of Bubble Columns. Chem. Eng. Science 23 (1968) 619.

    Article  CAS  Google Scholar 

  135. Kunigita, E., M. Ikura and T. Otake. Liquid Behavior in Bubble Column. J. Chem. Eng. Japan 3 (1970) 24.

    Article  Google Scholar 

  136. Ohki, Y. and H. Inoue. Longitudinal Mixing of the Liquid Phase in Bubble Columns. Chem. Eng. Science 25 (1970) 1.

    Article  CAS  Google Scholar 

  137. Eissa, S. H, M. M. El-Halwagi and M. Saleh. Axial and Radial Mixing in a Cocurrent Bubble Column. Ind. Eng. Chem. Process Des. Develop. 10 (1971) 31.

    Article  CAS  Google Scholar 

  138. Deckwer, W. D, U. Graeser, H. Langemann and Y. Serpemen. Zones of Different Mixing in Liquid Phase Bubble Columns. Chem. Eng. Science 28 (1972) 1972.

    Google Scholar 

  139. Chen, B. H Effects of Liquid Flow on Axial Mixing of Liquid in a Bubble Column. Can. J. Chem. Engineering 50 (1972) 436.

    Article  CAS  Google Scholar 

  140. Deckwer, W. D, R. Burckhart and G. Zoll. Mixing and Mass Transfer in Tall Bubble Columns. Chem. Eng. Science 29 (1974) 2177.

    Article  CAS  Google Scholar 

  141. Hikita, H. and H. Kikukawa. Liquid-Phase Mixing in Bubble Columns: Effect of Liquid Properties. Chem. Eng. Journal 8 (1974) 191.

    Article  CAS  Google Scholar 

  142. Towell, G. D and G. H. Ackerman. Axial Mixing of Liquid and Gas in Large Bubble Reactors. Proc. Symp. Chem. Reaction Engineering (Amsterdam, 1972, pp B3–1–B3–13).

    Google Scholar 

  143. Alexander, B. F and Y. T. Shah. Axial Dispersion Coefficients in Bubble Columns. Chem. Eng. Journal 11 (1976) 153.

    Article  CAS  Google Scholar 

  144. Gondo, S., S. Tanaka, K. Kazikuri and K. Kusunoki. Liquid Mixing by Large Gas Bubbles in Bubble Columns. Chem. Eng. Science 28 (1973) 1437.

    Article  CAS  Google Scholar 

  145. Eissa, S. H and K. Schügerl. Holdup and Backmixing. Investigations in Cocurrent and Countercurrent Bubble Columns. Chem. Eng. Science 30 (1975) 1251.

    Article  CAS  Google Scholar 

  146. Rice, R. G, J. M. I. Tupperainen and R. M. Hedge. Dispersion and Holdup in Bubble Columns — Comparison of Rigid and Flexible Spargers. Can. J. Chem. Engineering 59 (1981) 677.

    Article  CAS  Google Scholar 

  147. Field, R. W and J. F. Davidson. Axial Dispersion in Bubble Columns. Trans. Instn. Chem. Engineers 58 (1980) 228.

    CAS  Google Scholar 

  148. Kelkar, B. G, S. R. Phulgaonkar and Y. T. Shah. The Effect of Electrolyte Solutions on Hydrodynamic and Backmixing Characteristics in Bubble Columns. Chem. Eng. Journal 27 (1983) 125.

    Article  CAS  Google Scholar 

  149. Kelkar, B. G, Y. T. Shah and N. L. Carr. Hydrodynamics and Axial Mixing in a Three Phase Bubble Column — Effects of Slurry Properties. Ind. Eng. Chem. Process Des. Develop. 23 (1984) 308.

    Article  CAS  Google Scholar 

  150. Stiegel, G. J and Y. T. Shah. Backmixing and Liquid Holdup in Gas-Liquid Cocurrent Upflow Packed Column. Ind. Eng. Chem. Process Des. Develop. 16 (1977) 37.

    Article  CAS  Google Scholar 

  151. Chen, B. H Holdup and Axial Mixing in Bubble Columns Containing Screen Cylinder. Ind. Eng. Chem. Process Des. Devel. 15 (1976) 20.

    Article  CAS  Google Scholar 

  152. Shah, Y. T, C. A. Ratway and H. G. Mcilvried. Backmixing Characteristics of a Bubble Column with Vertically Suspended Tubes. Trans. Instn. Chem. Engineers 56 (1978) 107.

    CAS  Google Scholar 

  153. Pilhofer, Th., H. F. Bach, and K. H. Mamgartz. Determination of Fluid Dynamic Parameters in Bubble Column Design. ACS Symp. Series 65 (1978) 372.

    Article  CAS  Google Scholar 

  154. Deckwer, W. D, K. Nguyen-Tien, B. G. Kelkar and Y. T. Shah. Applicability of Axial Dispersion Model to Analyze Mass Transfer Measurements in Bubble Columns. AIChE Journal 29 (1983) 915.

    Article  CAS  Google Scholar 

  155. Vasalos, I. A, E. M. Bild, D. N. Rundell and D. F. Tatterson. Experimental Techniques for Studying the Fluid Dynamics of the H-Coal Reactor. Coal Processing Technology V6 (New York, AIChE J., 1980, pp. 226).

    Google Scholar 

  156. Overcashier, R. H, D. E. Todd and R. B. Olney. Some Effects of Baffles on a Fluidized System. AIChE Journal 5 (1959) 54.

    Article  CAS  Google Scholar 

  157. Orcutt, J. C, J. F. Davidson and R. L. Pigford. Reaction Time Distributions in Fluidized Catalytic Reactors. Chem. Engr. Progress Symp. Series No. 38, Vol. 58 (1962) 1.

    CAS  Google Scholar 

  158. Yates, J. G and J. A. P. Constans. Residence Time Distributions in a Fluidized Bed in which Gas Adsorption Occurs: Stimulus-Response Experiments. Chem. Eng. Science 28 (1973) 1341.

    Article  CAS  Google Scholar 

  159. Nauman, E. B and C. N. Collinge. The Theory of Contact Time Distributions in Gas Fluidized Beds. Chem. Eng. Science 23 (1968) 1309.

    Article  CAS  Google Scholar 

  160. Nauman, E. B and C. N. Collinge. Measurement of Contact Time Distribution in Gas Fluidized Beds. Chem. Eng. Science 23 (1968) 1317.

    Article  CAS  Google Scholar 

  161. Dohein, M. A and C. N. Collinge. Contact Time Distribution in Fluidized-Bed Reactors, Part I. Measurement at Room and Higher Temperatures. Chem. Eng. Journal 19 (1980) 39.

    Article  Google Scholar 

  162. Dohein, M. A and C. N. Collinge. Contact Time Distribution in Fluidized-Bed Reactors. Part II. Application of Mathematical Models and Parameter Estimation. Chem. Eng. Journal 19 (1980) 47.

    Google Scholar 

  163. Baba, T., M. Nakajima, S. Morooka and H. Matsuyama. New Measuring Syst em for Flow Patterns of Solid Particles in Gas-Solid Fluidized Bed. J. Chem. Eng. Japan 17 (1984) 275.

    Article  CAS  Google Scholar 

  164. Rabbits, M. C, G. J. Van Den Houten, D. Glasser and A. W. Bryson. Modeling of Residence Time Distribution in an Entrained Flow Coal Gasification Reactor. Chemsa 9 (1983) 220.

    Google Scholar 

  165. Kato, K., D. Taneda, Y. Sato and M. Maa. Lateral Solid Mixing in a Packed Fluidized Bed. J. Chem. Eng. Japan 17 (1984) 78.

    Article  CAS  Google Scholar 

  166. Bauer, W. and J. Werther. Role of Gas Distribution in Fluidized Bed Chemical Reactor Design. Chem. Eng. Communications 18 (1982) 137.

    Article  CAS  Google Scholar 

  167. Wippern, D., K. Wittman, J. Kuehne, H. Helmrich and K. Schugerl. Characterization of Fluidized Bed Reactors with Gas Tracer Measurements. Chem. Eng. Communications 10 (1981) 307.

    Article  CAS  Google Scholar 

  168. Burghardt, A. and J. M. Smith. Dynamic Response of a Single Catalyst Pellet. Chem. Eng. Science 34 (1979) 267.

    Article  CAS  Google Scholar 

  169. DudukoviĈ, M. P An Analytical Solution for the Transient Response in a Diffusion Cell of the Wicke-Kallenbach Type. Chem. Eng. Science 37 (1982) 153.

    Article  Google Scholar 

  170. Dutta, R., B. Croes and R. G. Rinker. Transient Response of Continuous Flow Stirred Reactors Containing Heterogeneous Systems for Catalysis or Sorption. Chem. Eng. Science 38 (1983) 885.

    Article  Google Scholar 

  171. Midoux, N. and J. C. Charpentier. Apparent Diffusivity and Tortuosity in a Liquid Filled Porous Catalyst used for Hydrodesulfurization of Petroleum Products. Chem. Eng. Science 28 (1973) 2108.

    Article  CAS  Google Scholar 

  172. Schneider, P. and J. M. Smith. Adsorption Rate Constants from Chromatography. AIChE Journal 14 (1968) 762.

    Article  CAS  Google Scholar 

  173. Suzuki, M. and J. M. Smith. Kinetic Studies by Chromatography. Chem. Eng. Science 26 (1971) 221.

    Article  CAS  Google Scholar 

  174. Dutta, R. and R. G. Rinker. Transient Response of Three Phase Slurry Reactors. Chem. Eng. Science 39 (1984) 893.

    Article  Google Scholar 

  175. Villermaux, J. Theory of Linear Chromatography, Percolation Processes: Theory and Applications (Rodriguez, A. E. and Toudeur, D., eds., Alphen eau den (Rijn, the Netherlands, Sijthoff & Noordhoff, 1981, p. 83).

    Google Scholar 

  176. Happel, J. Study of Kinetic Structure Using Marked Atoms. Catalysis Reviews 6 (1972) 221.

    Article  CAS  Google Scholar 

  177. Bennett, C. O The Transient Method and Elementary Steps in Heterogeneous Catalysis. Catal. Rev. — Sci. Eng. 13 (1976) 121.

    Article  CAS  Google Scholar 

  178. Happel, J., I. Suzuki, P. Kokayeff and V. Fthemakis. Multiple Isotope Tracing of Methanation over Nickel Catalyst. J. Catalysis 65 (1980) 59.

    Article  CAS  Google Scholar 

  179. Happel, J., H, Y, Cheh, M. Otarad, S. Ozawa, A. J. Severdia, T. Yoshido and V. Fthemakis. Multiple Isotope Tracing of Methanation over Nickel Catalyst II. Deuteromethanes Tracing. J. Catalysis 75 (1982) 314.

    Article  CAS  Google Scholar 

  180. Nassar, R., L. T. Fan and J. R. Too. A Stochastic Treatment of Unimolecular Reactions in an Unsteady State Continuous Flow System. Chem. Eng. Science 36 (1981) 1307.

    Article  CAS  Google Scholar 

  181. Nassar, R., J. R. Too and L. T. Fan. Stochastic Modeling of Polymerization in a Continuous Flow Reactor. J. Applied Polymer Science 26 (1981) 3745.

    Article  CAS  Google Scholar 

  182. Too, J. R, L. T. Fan and R. Nassar. Markov Chain Models of Complex Chemical Reactions in Continuous Flow Reactors.

    Google Scholar 

  183. Fox, R. O and L. T. Fan. A Master Equation Formulation for Stochastic Modeling of Mixing and Chemical Reactions in Inter-Connected Continuous Stirred Tank Reactors. Instn. Chem. Engrs. Symp. Series 87 (1984) 561.

    CAS  Google Scholar 

  184. Glasser, D. and R. Jackson. A Generalized Residence Time Distribution Model for a Chemical Reactor. Instn. Chem. Engrs. Symp. Series 87 (1984) 535.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Duduković, M.P. (1986). Tracer Methods in Chemical Reactors. Techniques and Applications. In: de Lasa, H.I. (eds) Chemical Reactor Design and Technology. NATO ASI Series, vol 110. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4400-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4400-8_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8457-4

  • Online ISBN: 978-94-009-4400-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics