Skip to main content

Heat Transfer in Packed Bed Reactors

  • Chapter
Chemical Reactor Design and Technology

Part of the book series: NATO ASI Series ((NSSE,volume 110))

Abstract

There are several commercial gas-solid catalysed reactions in which heat transfer plays a significant, if not dominant, role in limiting the reactor productivity, lowering the process selectivity and reducing the life of the catalyst. Among these include the oxidation of ethylene, benzene, C4 hydrocarbons and methanol, the ammoxidation of propylene, methanol synthesis (Lurgi), the hydrochlorination of methanol and steam reforming of natural gas and naphtha.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Froment G F, “Progress in fundamental design of fixed bed reactors”, International Chemical Reaction Engineering Conference, Pune (India) 9-11th January (1984), Vol 1, p 12.

    CAS  Google Scholar 

  2. Dixon A G, “Heat transfer in packed beds of low tube/particle diameter ratio”. Ph.D. Thesis. University of Edinburgh (1978).

    Google Scholar 

  3. Leva M, Weintraub M.., Grummer M and Clark E L, “Cooling of gases through packed tubes”, IEC. 40, 747 (1948).

    CAS  Google Scholar 

  4. Wellauer T.., Cresswell D L, Newson E J, “Heat transfer in packed reactor tubes suit able for selective oxidation”, ACS Symp.Series, 196, 527 (1982).

    Google Scholar 

  5. Gunn D J, Khalid M, “Thermal dispersion and wall heat transfer in packed beds”, C.E.S. 30, 261 (1975).

    Article  CAS  Google Scholar 

  6. DeWasch, A P, Froment G F, “Heat transfer in packed beds”, C.E.S. 27, 567 (1972).

    Article  Google Scholar 

  7. Subroutine E04 FBF, NAG Library, NAG Ltd. Oxford.

    Google Scholar 

  8. Dixon A G, Cresswell D L, Paterson W R, “Heat transfer in packed beds of low tube/particle diameter ratio”, ACS Symp. Series 65, 238 (1978).

    Google Scholar 

  9. Gunn D J, Ahmad M M, “The Characterisation of radial heat transfer in fixed beds”, First UK National Heat Transfer Conference, Leeds. 3-5 July (1984).

    Google Scholar 

  10. Olbrich W E, “A two-phase diffusional model to describe heat transfer processes in a non-adiabatic packed tubular bed”, Chemeca 70, Proceedings of a Cenference, Melbourne and Sydney, Aug 19-26, (1970) p101, Butterworth, London, England (1971).

    Google Scholar 

  11. Deans H A, Lapidus L, “Acomputational model for predicting and correlating the behaviour of fixed-bed reactors”, A.I.Ch.E.J. 6, 656 (1960).

    CAS  Google Scholar 

  12. Dixon A G, Cresswell D L, “Theoretical prediction of effective heat transfer parameters in packed beds”, A.I.Ch.E.J. 25, 663 (1979).

    CAS  Google Scholar 

  13. Melanson M M, Dixon A G, “Solid conduction in low DT/DP beds of spheres, pellets and rings”, Int.Jl. Heat and Mass Transfer, to be published, (1985).

    Google Scholar 

  14. Yagi S, Kunii D, “Studies on heat transfer near wall surface in packed beds”, A.I.Ch.E.J. 6, 97 (1960).

    CAS  Google Scholar 

  15. Kunii D, Smith J M, “Heat transfer characteristics of porous rocks”, A.I.Ch.E.J. 6, 71 (1960).

    CAS  Google Scholar 

  16. Bauer R, SchlUnder E U, “Effective radial thermal conductivity of packings in gas flow. Part II. Thermal conductivity of the packing fraction without gas flow”, Int Chem Eng 18 189 (1978).

    Google Scholar 

  17. Rao S M, Toor H L, “Heat transfer between particles in packed beds”, IEC Fund. 23 294 (1984).

    Article  CAS  Google Scholar 

  18. Colledge R A, Paterson W R, “Heat transfer at the wall of a packed bed: a j-factor analogy established”, p 103, 11th Annual Research Meeting on Heat Transfer and Catalysis and Catalytic Reactors, The Institution of Chemical Engineers, University of Bath, 9-10th April (1984).

    Google Scholar 

  19. Dixon A G, Di Costanzo M A, Soucy B A, “Fluid-phase radial transport in packed beds of low tube-to-particle diameter ratio” Int.Jl.Heat and Mass Transfer 27 1701 (1984).

    Article  CAS  Google Scholar 

  20. Dixon A G, “The length effect on packed bed effective heat transfer parameters”, submitted to the Chemical Engineering Journal.

    Google Scholar 

  21. Dixon A G, Labua L A, “Wall-to-fluid coefficients for fixed bed heat and mass transfer”, submitted to the International Journal of Heat and Mass Transfer.

    Google Scholar 

  22. Specchia V, Baldi G, Sicardi S, “Heat transfer in packed bed reactors with one-phase flow”, Chern. Eng.Commun. 4 361 (1980).

    Article  CAS  Google Scholar 

  23. Kulkarni B.D, Doraiswamy L K, “Estimation of effective transport properties of packed bed reactors”, Catal.Rev.Sci Eng., 22 431 (1980).

    Article  CAS  Google Scholar 

  24. Schluender E U, Hennecke F W, “Waermeuebergang in beheitzen oder gekuhlten Rohren mit Schuettungen aus Kugeln, Zylindern und Raschig-Ringen”, C.I.T., 45 277 (1973).

    Google Scholar 

  25. Bauer R, Schluender E U, “Effective radial thermal conductivity of packings in gas flow. Part I: Convective transport coefficient. Int.Chem.Eng., 18 181 (1978).

    Google Scholar 

  26. Arntz D, Knapp K, Prescher G., Hoffman H, “Catalytic air oxidation of propylene to acrolein: Modelling based on data from an industrial fixed-bed reactor”, ACS Symp.Ser. 196 3 (1982).

    Article  CAS  Google Scholar 

  27. Sharma R K, Cresswell D L, Newson E J, “Selective oxidation of benzene to maleic anhydride at commercially relevant conditions”, I.S.C.R.E. 8 p353, Edinburgh, Sept (1984); Inst.Chem.Eng.Symp.Series No 87.

    Google Scholar 

  28. Sharma R K, Cresswell D L, Newson E J, “Kinetics and reactor modelling in full scale pilot plant production of maleic anhydride by oxidation of n-butane”, A.I.Ch.E. 1984 Annual Meeting, San Francisco, paper No 96b.

    Google Scholar 

  29. Levec J, Carbonell R G, “Longitudinal and Lateral thermal Dispersion in packed beds: Part I Theory; Part II Comparison between Theory and Experiment”, A.I.Ch.E.J. (in press).

    Google Scholar 

  30. Lerou J J, Froment G F, “Velocity, temperature and conversion profiles in fixed bed catalytic reactors”, Chem.Eng.Sci 32 853 (1977).

    Article  CAS  Google Scholar 

  31. Vortmeyer D, Schuster J, “Evaluation of steady flow profiles in rectangular and circular packed beds by a variational method”, Chem.Eng.Sci. 38 1691 (1983).

    Article  CAS  Google Scholar 

  32. Gay R R, Gitnick B J, Ansari F, “Modelling of steady state flow in heated (BWR) parallel channels”, A.I.Ch.E.Symp.Series — Heat Transfer, Orlando (1980) p139.

    Google Scholar 

  33. Ohsaki K, Nishimura Y, Miki H, Eto M, “Development of a new methanol reactor”, A.I.Ch.E. 1984 Spring National Meeting Anaheim, California 20-24 May.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Cresswell, D.L. (1986). Heat Transfer in Packed Bed Reactors. In: de Lasa, H.I. (eds) Chemical Reactor Design and Technology. NATO ASI Series, vol 110. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4400-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4400-8_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8457-4

  • Online ISBN: 978-94-009-4400-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics