Skip to main content

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 24))

Abstract

Nitrogen compounds comprise from 40% to 50% of the dry matter of protoplasm, the living substance of plant cells. For this reason, N is required in large quantities by growing plants and is indeed the key to soil fertility. NonN2-fixing plants—for example, cereals—take all the N they need from the soil. In Senegalese conditions this uptake was estimated to be as follows: 79–132 kg N/ha/crop for pearl millet; 74–84 for rice; 134 for sorghum; and 121–138 for maize [3]. N2-fixing plants, essentially legumes, take a part of the N they require from the atmosphere, but we shall see later that the N uptake from soil may be relatively high.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ayanaba A (1977) Toward better use of inoculants in the humid tropics. In Ayanaba A and Dart PJ, ed. Biological nitrogen fixation in farming systems of the tropics, pp 181–204. New York: John Wiley.

    Google Scholar 

  2. Bergersen FJ ed. (1980) Methods for evaluating biological nitrogen fixation. Chichester: John Wiley.

    Google Scholar 

  3. Blondel D (1971) Contribution a l’etude de la croissance-matiere seche et de ralimentation azotee des cereales de culture seche au Sénégal. Agr Trop 26, 707–720.

    CAS  Google Scholar 

  4. Bremner JM (1977) Use of nitrogen-tracer techniques for research on nitrogen fixation. In Ayanaba A and Dart PJ, ed. Biological nitrogen fixation in farming systems of the tropics, pp 335–352. New York: John Wiley.

    Google Scholar 

  5. Broadbent FE, Nakashina T and Chang GY (1982) Estimation of nitrogen fixation by isotope dilution in field and greenhouse experiments. Agron J 74, 625–628.

    Article  Google Scholar 

  6. Bromfield ESP and Ayanaba A (1980) The efficacity of soybean inoculation on acid soil in tropical Africa. Plant and Soil 54, 95–106.

    Article  CAS  Google Scholar 

  7. Callaham D, Del Tredici P and Torrey JG (1978) Isolation and cultivation in vitroof the actinomycete causing root nodulation in Comptonia.Science 199, 899–902.

    Article  CAS  Google Scholar 

  8. Cornet F, Otto C, Rinaudo G, Diem HG and Dommergues YR Nitrogen fixation by Acacia holosericeagrown in field-simulating conditions. Oecol Plant (in press).

    Google Scholar 

  9. Dancette C and Niang M (1980) Roles de l’arbre et son integration dans les systemes agraires du nord du Sénégal. In Le role des arbres au Sahel: compte rendu du colloque tenu a Dakar, Sénégal, du 5 au 10 novembre 1979, pp 57–63, Ottawa: CRDI.

    Google Scholar 

  10. Dijkman MJ (1950) Leucaena—a promising soil-erosion-control plant. Economic Botany 4, 337–349.

    Article  Google Scholar 

  11. Dommergues YR (1963) Evaluation du taux de fixation de l’azote dans un sol dunaire reboisé en filao (Casuarina equisetifolia).Agrochimica 105, 179–187.

    CAS  Google Scholar 

  12. Dommergues YR (1978) The plant-microorganism system. In Dommergues YR and Krupa SV, ed. Interactions between non-pathogenic soil microorganisms and plant, pp 1–36. Amsterdam: Elsevier.

    Google Scholar 

  13. Dommergues YR (1982) Scarcely explored means of increasing the soil N pool through biological N2 fixation. In Whither soil research. Proc 12th Intern Congress Soil Science, New Delhi, pp 138–149.

    Google Scholar 

  14. Dommergues YR, Dreyfus B, Diem HG and Duhoux E (1984) Fixation de l’azote et agriculture tropicale. La Recherche 16, 22–32.

    Google Scholar 

  15. Dreyfus B and Dommergues YR (1980) Non-inhibition de la fixation d’azote atmospherique par l’azote combine chez une legumineuse a nodules caulinaires, Sesbania rostrata.C R Acad Sciences Paris D 291, 767–770.

    Google Scholar 

  16. Dreyfus BL and Dommergues YR (1981) Nitrogen-fixing nodules induced by Rhizobiumon the stem of the tropical legume Sesbania rostrata.FEMS Microbiol 10, 313–317.

    Article  CAS  Google Scholar 

  17. Duhoux E and Dommergues YR The use of N2-fixing trees in forestry and soil restoration in the tropics. Proc of ABNF, Nairobi (in press).

    Google Scholar 

  18. Eaglesham ARJ, Ayanaba A, Ranga Rao V and Eskew DL (1982) Mineral N effects on cowpea and soybean crops in a Nigerian soil II. Amounts of N fixed and accrual to the soil. Plant and Soil 68, 183–192.

    CAS  Google Scholar 

  19. Escalante G, Herrera R and Aranguren YJ (1984) Fijacion de nitrogeno en arboles de sombra (Erythrina poeppigiana)en cacaotales del norte de Venezuela. Pesq Agropec Bras, Brasilia 19 s/n, 223–230.

    Google Scholar 

  20. Felker P (1978) State of the art: Acacia albidaas a complementary permanent intercrop with annual crops. Washington: US Agency for International Development.

    Google Scholar 

  21. Fried M and Broeshart H (1975) An independent measurement of the amount of nitrogen fixed by a legume crop. Plant and Soil 43, 707–711.

    Article  Google Scholar 

  22. Ganry F, Wey J, Diem HG and Dommergues YR Inoculation with Glomus mosseaeimproves N2 fixation by field-grown soybean. Biology Fertility of Soils (in press).

    Google Scholar 

  23. Gauthier D, Diem HG, Dommergues YR and Ganry F Assessment of N2 fixation by Casuarina equisetifoliainoculated with FrankiaORSO21001 using 15N methods. Soil Biol Biochem (in press).

    Google Scholar 

  24. Germani G (1979) Nematicide application as a tool to study the impact of nematodes on plant productivity. In Mongi HO and Huxley PA, ed. Soils research in agroforestry, pp 297–313. Nairobi: ICRAF.

    Google Scholar 

  25. Gibson AH (1977) The influence of the environment and managerial practices on the legume-Rhizobiumsymbiosis. In Hardy RWF and Gibson AH, ed. A Treatise on dinitrogen fixation, pp 393–450. New York: John Wiley.

    Google Scholar 

  26. Gibson AH, Dreyfus BL and Dommergues YR (1982) Nitrogen fixation by legumes in the tropics. In Dommergues YR and Diem HG, ed. Microbiology of tropical soils and plant productivity, pp 37–73. The Hague: Nijhoff/Junk.

    Google Scholar 

  27. Giffard PL (1971) Recherches complementaires sur Acacia albida.Bois et Foretes des Tropiques 135, 3–20.

    Google Scholar 

  28. Giles KL and Whitehead HCM (1975) The transfer of nitrogen-fixing ability to a eukaryote cell. Cytobios 14, 49–61.

    CAS  Google Scholar 

  29. Gresshoff PM, McNiel DL and Carrol B (1984) Symbiotically altered mutants of soybean: nodulation defects and supernodulation. In Second intern symp molecular genetics of the bacteria-plant interaction, 80. New York: Cornell University.

    Google Scholar 

  30. Guevarra AB, Whitney AS and Thompson JR (1978) Influence of intra-row spacing and cutting regimes on the growth and yield of Leucaena. Agron J 70, 1033–1037.

    Article  Google Scholar 

  31. Halliday J and Somasegaran P (1982) Nodulation, nitrogen fixation, and Rhizobiumstrain affinities in the genus Leucaena.In Leucaena research in the Asian-Pacific region, pp 27–32. Ottawa: IDRC.

    Google Scholar 

  32. Hardy RWF, Burns RC and Holsten ED (1973) Applications of the acetylene-ethylene assay for measurement of nitrogen fixation. Soil Biol Biochem 5, 47–81.

    Article  CAS  Google Scholar 

  33. Henzell EF and Vallis I (1977) Transfer of nitrogen between legumes and other crops. In Ayanaba A and Dart PJ, ed. Biological nitrogen fixation in farming systems of the tropics, pp 73–88. New York: John Wiley.

    Google Scholar 

  34. Högberg P and Kvarnstrom M (1982) Nitrogen fixation by the woody legume Leucaena leucocephalain Tanzania. Plant and Soil 66, 21–28.

    Article  Google Scholar 

  35. Hooykaas PPJ, Van Brussel AAN, den Dulk-Ras H, Van Slogteren GMS and Schilperoort RA (1981) Sym plasmid of Rhizobium trifoliiexpressed in different rhizobial species and Agrobacterium tumefaciens.Nature, 291, 351–353.

    Article  CAS  Google Scholar 

  36. Huxley PA (1983) The role of trees in agroforestry: some comments. In Huxley PA, ed. Plant research and agroforestry, pp 257–270. Nairobi: ICRAF.

    Google Scholar 

  37. Huxley PA ed. (1983) Plant research and agroforestry. Nairobi: ICRAF.

    Google Scholar 

  38. Jung G (1969) Cycles geochimiques dans un ecosysteme de region tropicale seche: Acacia albidasol ferrugineux tropical peu lessive (Dior). Oecol Plant 4, 195–210.

    CAS  Google Scholar 

  39. Knowles R (1980) Nitrogen fixation in natural plant communities and soils. In Bergersen FJ ed. Methods for evaluating biological nitrogen fixation, pp 557–582. Chichester: John Wiley.

    Google Scholar 

  40. Kondas S (1981) Casuarina equisetifolia—A multipurpose cash crop in India. In Midgley SJ, Turnbull JW and Johnston RD ed. Casuarina ecology management and utilization, pp 66–76. Melbourne: CSIRO.

    Google Scholar 

  41. Langkamp PJ, Farnell GK and Dalling MJ (1982) Nutrient cycling in a stand of Acacia holosericea.I. Measurements of precipitation, seasonal acetylene reduction, plant growth and nitrogen requirement. Austr J Bot 30, 87–106.

    CAS  Google Scholar 

  42. LaRue TA and Patterson TG (1981) How much nitrogen do legumes fix? Advances in Agron 34, 15–38.

    Article  CAS  Google Scholar 

  43. Mikola P, Uomala P and Malkonen E (1983) Application of biological nitrogen fixation in European silviculture. In Gordon JC and Wheeler CT ed. Biological nitrogen fixation in forest ecosystems: foundations and applications, pp 279–294. The Hague: Nijhoff/Junk.

    Google Scholar 

  44. Nutman PS (1954) Symbiotic effectiveness in nodulated red clover. I. Variation in host and in bacteria. Heredity 8, 35–46.

    Google Scholar 

  45. Nutman PS (1954) Symbiotic effectiveness in nodulated red clover. II. A major gene for ineffectiveness in the host. Heredity 8, 47–60.

    Google Scholar 

  46. Orchard ER and Darby GD (1956) Fertility changes under continued wattle culture with special reference to nitrogen fixation and base status of the soil. In Comptes rendus 6ieme congres international science sol, Paris D, pp 305–310.

    Google Scholar 

  47. Patro C and Behera RN (1979) Cashew helps to fix sand dunes in Orissa. Indian Farming 28,31–32.

    Google Scholar 

  48. Postgate JR and Cannon FC (1981) The molecular and genetic manipulation of nitrogen fixation. Phil Trans R Soc Lond B292, 589–599.

    Article  Google Scholar 

  49. Rachie KO (1983) Intercropping tree legumes with annual crops. In Huxley PA ed. Plant research and agroforestry, pp 103–116. Nairobi: ICRAF.

    Google Scholar 

  50. Raintree JB (1983) Bioeconomic considerations in the design of agroforestry cropping systems. In Huxley PA ed. Plant research and agroforestry, pp 271–289. Nairobi: ICRAF.

    Google Scholar 

  51. Rennie RJ and Rennie DA (1981) Techniques for quantifying N2 fixation in association with nonlegumes under field and greenhouse conditions. Can J Microbiol 29, 1022–1035.

    Article  Google Scholar 

  52. Rinaudo G, Dreyfus B and Dommergues YR (1983) Sesbania rostratagreen manure and the nitrogen content of rice crop and soil. Soil Biol Biochem 15, 111–113.

    Article  Google Scholar 

  53. Roger P and Watanabe I (1985) Technologies for utilizing biological nitrogen fixation in wetland rice: potentialities, current usage, and limiting factors. Fertilizer Research (in press).

    Google Scholar 

  54. Roskoski JP, Montano J, Van Kessel C and Castilleja G (1982) Nitrogen fixation by tropical woody legumes: potential source of soil enrichment. In Graham PH ed. Biological nitrogen fixation technology for tropical agriculture, pp 447–454. Cali: CIAT.

    Google Scholar 

  55. Rundel PW, Nielsen ET, Sharifi MR, Virginia RA, Jarrell WM, Kohl DH and Shearer GB (1982) Seasonal dynamics of nitrogen cycling for a Prosopis woodland in the Sonoran desert. Plant and Soil 67, 343–353.

    Article  CAS  Google Scholar 

  56. Silvester WB (1977) Dinitrogen fixation by plant associations excluding legumes. In Hardy RWF and Gibson AH ed. A treatise on dinitrogen fixation, IV: Agronomy and Ecology, pp 141–190. New York: John Wiley.

    Google Scholar 

  57. Silvester WB (1983) Analysis of nitrogen fixation. In Gordon JC and Wheeler CT ed. Biological nitrogen fixation in forest ecosystems: foundations and applications, pp 173–212. The Hague: Nijhoff/Junk.

    Google Scholar 

  58. Smith RL, Bouton JH, Schank SC, Quesenberry KH, Tyler ME, Milam JR, Gaskins MH and Li’ttell RC (1976) Nitrogen fixation in grasses inoculated with Spirillum lipoferum.Science 193, 1003–1005.

    Article  CAS  Google Scholar 

  59. Smith RL, Schank SC, Milam JR and Baltensperger AA (1984) Responses of Sorghumand Pennisetumspecies to the N2-fixing bacterium Azospirillum brasilense.Appl Environ Microbiol 47, 1331–1336.

    CAS  Google Scholar 

  60. Sprent JI (1983) Agricultural and horticultural systems: implications for forestry. In Gordon JC and Wheeler CT ed. Biological nitrogen fixation in forest ecosystems: foundations and applications, pp 213–232. The Hague: Nijhoff/Junk.

    Google Scholar 

  61. Van Berkum P and Day JM (1980) Nitrogenase activity associated with soil cores of grasses in Brasil. Soil Biol Biochem 12, 137–140.

    Article  Google Scholar 

  62. Venkateswarlu B and Rao AV (1983) Response of pearl millet to inoculation with different strains of Azospirillum brasilense.Plant and Soil 74, 379–3

    Article  CAS  Google Scholar 

  63. Vincent JM (1970) A manual for the practical study of root-nodule bacteria. IBP handbook no 15. Oxford and Edinburgh: Blackwell.

    Google Scholar 

  64. Vose PB, Ruschel AP, Victoria RL, Saito SMT and Matsui E (1982) 15N as a tool in biological nitrogen fixation research. In Graham PH and Harris SC ed. Biological nitrogen fixation technology for tropical agriculture, pp 575–592. Cali: CIAT.

    Google Scholar 

  65. Watanabe I and Roger PA (1983) Nitrogen fixation in wetland rice field. In Subba Rao NS ed. Current developments in biological nitrogen fixation, pp 237–276. New Delhi: Oxford and IBH.

    Google Scholar 

  66. Wetselaar R. and Ganry F (1982) Nitrogen balance in tropical agrosystems. In Dommergues YR and Diem HG ed. Microbiology of tropical soils and plant productivity, pp 1–36. The Hague: Nijhoff/Junk.

    Google Scholar 

  67. Williams WA, Jones MB and Delwiche CC (1977) N fixation measurement by total N difference and 15N A-values in lysimeters. Agron J 69, 1023–1024.

    Article  CAS  Google Scholar 

  68. Witty JF (1979) Acetylene reduction assay can overestimate nitrogen fixation in soil. Soil Biol Biochem 11,209–210.

    Google Scholar 

  69. Witty JF (1983) Estimating N2 fixation in the field using l5N-labelled fertilizer: some problems and solutions. Soil Biol Biochem 15, 631–639.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Dommergues, Y.R., Ganry, F. (1986). Biological nitrogen fixation and soil fertility maintenance. In: Mokwunye, A.U., Vlek, P.L.G. (eds) Management of Nitrogen and Phosphorus Fertilizers in Sub-Saharan Africa. Developments in Plant and Soil Sciences, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4398-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4398-8_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8456-7

  • Online ISBN: 978-94-009-4398-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics