Skip to main content

Agricultural opportunities from nitrogen fixation research

  • Chapter
Biotechnology for Solving Agricultural Problems

Part of the book series: Beltsville Symposia in Agricultural Research ((BSAR,volume 10))

  • 151 Accesses

Abstract

Most applied nitrogen fixation research currently conducted focuses on the important legume-Rhizobium symbiosis. Progress is being made towards increasing the level of nitrogenase activity in the nodule, increasing the flow of carbon to the nodule, decreasing the waste of electrons through hydrogen evolution and increasing the competitiveness of useful Rhizobium strains. Because of the intimate association between Rhizobium and the root, Rhizobium strains with certain foreign genes may be useful to protect the plant from certain pests. Opportunities from research with other nitrogen-fixing bacteria include several approaches aimed towards obtaining cereal plants with the capability to fix nitrogen. Direct genetic engineering of nif genes as well as optimizing bacteria-root associations are being examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bentley, B. 1984. Nitrogen fixation in termites: fate of newly fixed nitrogen. J. Insect Physiol. 30:653–655.

    Article  CAS  Google Scholar 

  • Bishop, P. E., F. B. Dazzo, E. R. Applebaum, R. J. Maier and W. J. Brill. 1977. Intergeneric transfer of genes involved in the Rhizobium-legume symbiosis. Science 198:138–140.

    Article  Google Scholar 

  • Brewin, N. J., T. M. DeJong, D. A. Phillips and A. W. B. Johnston. 1980. Contransfer of determinants for hydrogenase activity and nodulation ability in Rhizobium leguminosarum. Nature (London) 288:77–79.

    Article  CAS  Google Scholar 

  • Breznak, J. A., W. J. Brill, J. W. Mertins and H. C. Coppel. 1973. Nitrogen fixation in termites. Nature (London) 244:577–580.

    Article  CAS  Google Scholar 

  • Brill, W. J. and W. C. von Meyer. 1985. Method and composition for control of termite and shipworms. U.S. Patent Number 4,504,468.

    Google Scholar 

  • Dazzo, F. B. 1982. Leguminous root nodules. Pp. 431–466 in R. G. Burns and J. H. Slater, eds., Experimental Microbial Ecology. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • den Broeck, G.V., M. P. Timko, A. P. Kausch, A. R. Cashmore, M. V. Montagu and L. Herrera-Estrella. 1985. Targeting of a foreign protein to chloroplasts by fusion to the transit peptide from the small subunit of ribulose 1,5-bisphosphate carboxylase. Nature (London) 313:358–363.

    Article  Google Scholar 

  • Dixon, R. A. and J. R. Postgate. 1972. Genetic transfer of nitrogen fixation from Klebsiella pneumoniae to Escherichia coli. Nature (London) 237:102–103.

    Article  CAS  Google Scholar 

  • Dixon, R. O. D. 1978. Nitrogenase-hydrogenase interrelationships in rhizobia. Biochimie 60:233–236.

    Article  PubMed  CAS  Google Scholar 

  • Eady, R. R. and J. R. Postgate. 1974. Nitrogenase. Nature (London) 249:805–810.

    Article  CAS  Google Scholar 

  • Ela, S. W., M. A. Anderson and W. J. Brill. 1982. Screening and selection of maize to enhance associative bacterial nitrogen fixation. Plant Physiol. 70:1564–1567.

    Article  PubMed  CAS  Google Scholar 

  • Emerich, D. W., T. Ruiz-Arqueso, T. M. Ching and H. J. Evans. 1979. Hydrogen-dependent nitrogenase activity and ATP formation in Rhizobium japonicum bacteroids. J. Bacteriol. 173:153–160.

    Google Scholar 

  • Evans, H. J., F. J. Hanus, S. A. Russell, A. R. Harker, G. R. Lambert and D. A. Dalton. 1985. Biochemical characterization, evaluation, and genetics of H 2 recycling in Rhizobium. Pp. 3–11 in P. W. Ludden and J. E. Burris, eds., Nitrogen Fixation and CO 2 Metabolism. Elsevier Science Publishing Co., Inc., New York.

    Google Scholar 

  • Gatenby, A. A., J. A. Castleton and M. W. Saul. 1981. Expression in E. coli of maize and wheat chloroplast genes for large subunit of ribulose bisphosphate carboxylase. Nature (London) 291:117–121.

    Article  CAS  Google Scholar 

  • Gordon, J. K and W. J. Brill. 1972. Mutants that produce nitrogenase in the presence of ammonia. Proc. Nat. Acad. Sci. USA 69: 3501–3503.

    Article  PubMed  CAS  Google Scholar 

  • Handelsman, J. and W. J. Brill. 1985. Erwinia herbicola isolates from alfalfa plants may play a role in nodulation of alfalfa by Rhizobium meliloti. Appl. and Environ. Microbiol. 49:818–821.

    CAS  Google Scholar 

  • Handelsman, J., R. A. Ugalde and W. J. Brill. 1984. Rhizobium meliloti competitiveness and the alfalfa agglutinin. J. Bacteriol. 157:703–707.

    PubMed  CAS  Google Scholar 

  • Haugland, R. A., M. A. Cantrell, J. S. Beaty, F. J. Hanus, S. A. Russell and H. J. Evans. 1984. Characterization of Rhizobium japonicum hydrogen uptake genes. J. Bacteriol. 159:1006–1012.

    PubMed  CAS  Google Scholar 

  • Hanus, F. J., R. J. Maier and H. J. Evans. 1979. Autotropic growth of H 2-uptake positive strains of Rhizobium japonicum in an atmosphere supplied with H 2 gas. Proc. Nat. Acad. Sci. USA 76:1788–1792.

    Article  PubMed  CAS  Google Scholar 

  • Horn, S. S. M., L. A. Graham and R. J. Maier. 1985. Isolation of genes (nif/hup cosmids) involved in hydrogenase and nitrogenase activities in Rhizobium japonicum. J. Bacteriol. 161:882–887.

    Google Scholar 

  • Keyser, H., D. F. Weber and S. L. Uratsu. 1984. Rhizobium japonicum serogroup and hydrogenase phenotype distribution in 12 states. Appl. Environ. Microbiol. 47:613–615.

    PubMed  CAS  Google Scholar 

  • MacNeil, T., D. MacNeil, G. P. Roberts, M. A. Supiano and W. J. Brill. 1978. Fine-structure mapping and complementation analysis of nif (nitrogen fixation) genes in Klebsiella pneumoniae. J. Bacteriol. 136:253–266.

    PubMed  CAS  Google Scholar 

  • Maier, R. J., P. E. Bishop and W. J. Brill. 1978. Transfer of genes required for nodulation from Rhizobium japonicum to Azotobacter vinelandii. J. Bacteriol. 134:1199–1201.

    PubMed  CAS  Google Scholar 

  • Maier, R. J. 1981. Rhizobium japonicum mutant strains unable to grow chemoautotrophically with H 2. J. Bacteriol. 145:533–540.

    PubMed  CAS  Google Scholar 

  • Merberg, D. and R. J. Maier. 1983. Mutants of Rhizobium japonicum with increased hydrogenase activity. Science 220:1064–1065.

    Article  PubMed  CAS  Google Scholar 

  • Merrick, M. and R. Dixon. 1984. Why don’t plants fix nitrogen? Trends in Biotechnol. 2:162–166.

    Article  CAS  Google Scholar 

  • Nivea-Gomez, D., G. P. Roberts, S. Klevickis and W. J. Brill, 1980. Electron transport to nitrogenase in Klebsiella pneumoniae. Proc. Nat. Acad. Sci. USA 77:2555–2558.

    Article  Google Scholar 

  • Noel, K. D. and W. J. Brill. 1980. Diversity and dynamics of indigenous Rhizobium japonicum populations. Appl. Environ. Microbiol. 40:931–938.

    PubMed  CAS  Google Scholar 

  • Paau, A. S., W. T. Leps and W. J. Brill. 1981. Agglutinin from alfalfa necessary for binding and nodulation by Rhizobium meliloti. Science 213:1513–1514.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, G. P., W. T. Leps, L. E. Silver and W. J. Brill. 1980. Use of two-dimensional polyacrylamide gel electrophoresis to identify and classify Rhizobium strains. Appl. Environ. Microbiol. 39:414–422.

    PubMed  CAS  Google Scholar 

  • Roberts, G. P., T. MacNeil, D. MacNeil and W. J. Brill. 1978. Regulation and characterization of protein products coded by the nif (nitrogen fixation) genes of Klebsiella pneumoniae. J. Bacteriol. 136:267–279.

    PubMed  CAS  Google Scholar 

  • Shah, V. K. and W. J. Brill. 1977. Isolation of an iron-molybdenum cofactor from nitrogenase. Proc. Nat. Acad. Sci. USA 74:3249–3253.

    Article  PubMed  CAS  Google Scholar 

  • Shah, V. K., J. R. Chisnell and W. J. Brill. 1978. Acetylene reduction by the iron-molybdenum cofactor from nitrogenase. Biochem. Biophys. Res. Commun. 81:232–236.

    Article  PubMed  CAS  Google Scholar 

  • Shah, V. K., G. Stacey and W. J. Brill. 1983. Electron transport to nitrogenase: purification and characterization of pyruvate: flavodoxin oxidoreductase, the nifJ gene product. J. Biol. Chem. 258:12064–12068.

    PubMed  CAS  Google Scholar 

  • Shah, V. K., R. A. Ugalde, J. Imperial and W. J. Brill. 1984. Molybdenum in nitrogenase. Ann. Rev. Biochem. 53:231–257.

    Article  PubMed  CAS  Google Scholar 

  • Silverman, M. and M. Simon. 1980. Phase variation: genetic switching mutants. Cell 19: 845–854.

    Article  PubMed  CAS  Google Scholar 

  • Simpson, F. B. and R. H. Burris. 1984. A nitrogen pressure of 50 atmospheres does not prevent evolution of hydrogen by nitrogenase. Science 224:1095–1097.

    Article  PubMed  CAS  Google Scholar 

  • Su, N-Y., M. Tamashiro, J. R. Yates, and M. I. Haverty. 1982. Effect of behavior on the evaluation of insecticides for prevention of or remedial control of the Formosan subterranean termite. J. Econ. Entom. 75:188–193.

    CAS  Google Scholar 

  • Tilak, K. V. B. R., K. Schneider and H. G. Schlegel. 1984. Autotrophic growth of strains of Rhizobium and properties of isolated hydrogenase. Curr. Microbiol. 10:49–59.

    Article  CAS  Google Scholar 

  • van Berkum, P. and B. B. Bohlool. 1980. Evaluation of nitrogen fixation by bacteria in association with roots of tropical grasses. Microbiol. Rev. 44:491–517.

    PubMed  Google Scholar 

  • Yoch, D. C., J. R. Benemann, R. C. Valentine and D. I. Arnon. 1969. The electron transport system in nitrogen fixation by Azotobacter. II. Isolation and function of a new type of ferredoxin. Proc. Nat. Acad. Sci. USA 64:1404–1410.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Brill, W.J. (1986). Agricultural opportunities from nitrogen fixation research. In: Augustine, P.C., Danforth, H.D., Bakst, M.R. (eds) Biotechnology for Solving Agricultural Problems. Beltsville Symposia in Agricultural Research, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4396-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4396-4_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8455-0

  • Online ISBN: 978-94-009-4396-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics