Skip to main content

Nitrogen fixation associated with non-legumes in agriculture

  • Chapter
Nitrogen Fixation with Non-Legumes

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 21))

Summary

This review examines the nitrogen cycle in upland agricultural situations where non-legume N2-fixation is likely to be important for crop growth. Evidence for associative fixation is adduced from accumulation of N in the top 15 cm soil under grasses, from N balances for crop production obtained from both pot and field experiments, in tropical and temperate environments, measurements of nitrogenase (C2H2 reduction) activity, uptake of 15N2 by plants and 15N isotope dilution. Factors influencing the activity such as the provision of carbon substrate by the plant and the efficiency of its utilisation by the bacteria, plant cultivar, soil moisture and N levels, and inoculation with N2-fixing bacteria are discussed. Crop responses to inoculation with Azospirillum are detailed. The breakdown of crop residues, particularly straw, can support large levels of N2-fixation. Cyanobacteria as crusts on the soil surface also fix nitrogen actively in many environments. Fixation by the nodulated, non-legume trees Casuarina and Parasponia has beneficial effects in some cropping systems in Asia. I conclude that non-legume N2-fixation makes a significant contribution to the production of some major cereal crops in both temperate and tropical environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albrecht S L, Okon Y, Connquist J and Burris R H 1981 Nitrogen fixation by corn-Azospirillum associations in a temperate climate. Crop Sci. 21, 301–306.

    Article  CAS  Google Scholar 

  2. Allison F E 1947 Azobacter inoculation of crops. I. Historical. Soil Sci. 64, 413–429.

    Article  CAS  Google Scholar 

  3. Ayanaba A, Tuckwell S B and Jenkinson D S 1976 The effects of clearing and cropping on the organic reserves and biomass of tropical forest soils. Soil Biol. Biochem. 8, 519–525.

    Article  CAS  Google Scholar 

  4. Balandreau J 1983 Microbiology of the association. Can. J. Microbiol. 29, 851–859.

    Article  Google Scholar 

  5. Balandreau J, Millier C R and Dommergues Y 1974 Diurnal variations in nitrogenase activity in the field. Appl. Microbiol. 27, 662–665.

    PubMed  CAS  Google Scholar 

  6. Baldani V L D, Baldani J I and Dobereiner J 1983 Effects of Azospirillum inoculation on root infection and nitrogen incorporation in wheat. Can. J. Microbiol. 29, 924–929.

    Article  Google Scholar 

  7. Baltensperger A A, Schank S C, Smith R L, Littell R C, Banton J H and Dudek A F 1978 Effect of inoculation with Azospirillum and Azotobacter on turf-type Bermuda genotypes. Crop Sci. 18, 1043–1045.

    Article  Google Scholar 

  8. Barber D A and Lynch J M 1977 Microbial growth in the rhizosphere. Soil Biol. Biochem. 9, 305–308.

    Article  CAS  Google Scholar 

  9. Barber D A and Martin J K 1976 The release of organic substances by cereal roots into the soil. New Phytol. 76, 69–80.

    Article  CAS  Google Scholar 

  10. Bartholomew W V 1977 Soil nitrogen changes in farming systems in the humid tropics. In Biological Nitrogen Fixation in Farming Systems of the Tropics. Eds A Ayanaba and P J Dart. John Wiley, Chichester, pp 27–42.

    Google Scholar 

  11. Beck S M and Gilmour C M 1983 Role of wheat root exudates in associative nitrogen fixation. Soil Biol. Biochem. 15, 33–38.

    Article  Google Scholar 

  12. Boddey R M and Victoria R L 1985 Estimation of biological nitrogen fixation associated with Brachiaria and Paspalum grasses using 15N labelled organic matter and fertilizer. Plant and Soil 90, 265–292.

    Article  Google Scholar 

  13. Boddey R M, Chalk P M, Victoria R L, Matsui E and Dobereiner J 1983 The use of the 15N isotope dilution technique to estimate the contribution of associated biological nitrogen fixation to the nitrogen nutrition of Paspalum notatum cv batatais. Can. J. Microbiol. 29, 1036–1045.

    Article  Google Scholar 

  14. Boddey R M and Döbereiner J 1982 Association of Azospirillum and other diazotrophs with tropical gramineae. In Non Symbiotic Nitrogen Fixation and Organic Matter in the Tropics. Symp. Papers I. pp 28–47. Trans. 12th Int. Cong. Soil Sci. New Delhi.

    Google Scholar 

  15. Boddey R M and Döbereiner J 1984 Nitrogen fixation associated with grasses and cereals. In Current Perspectives in Biological Nitrogen Fixation. Ed. N S Subba Rao. Oxford and IBH, New Delhi, pp 277–313.

    Google Scholar 

  16. Bouton J H, Smith R L, Schank S C, Burton G W, Tyler M E, Littell R C, Gallaher R N and Quesenberry K H 1979 Response of pearl millet inbreds and hybrids to inoculation with Azospirillum brasilense. Crop Sci. 19, 12–16.

    Article  Google Scholar 

  17. Bouton J H and Zuberer D A 1979 Response of Panicum maximum Jacq to inoculation with Azospirillum brasilense. Plant and Soil 52, 585–590.

    Article  Google Scholar 

  18. Bradley C E 1910 Nitrogen and carbon in the virgin and fallowed soils of eastern Oregon. J. Industrial Eng. Chem. 2, 138–139.

    Article  CAS  Google Scholar 

  19. Bremner J M 1960 Determination of nitrogen in soil by the Kjeldahl method. J. Agric. Sci. 55, 1–23.

    Article  Google Scholar 

  20. Buresh R J, Casselman M E and Patrick W H 1981 Nitrogen fixation in flooded soil systems, a review. Adv. Agron. 33, 149–192.

    Article  Google Scholar 

  21. Chistyakova I K and Kalininskaya T A 1984 Nitrogen fixation in Takyr-like soils under rice. Mikrobiologiya 53, 123–128.

    CAS  Google Scholar 

  22. Cohen E, Okon Y, Kigel J, Nur I and Henis Y 1980 Increases in dry weight and total nitrogen content in Zea mays and Setaria italica associated with nitrogen fixing Azospirillum spp. Plant Physiol. 66, 246–249.

    Article  Google Scholar 

  23. Cook R J and Baker K F 1983 The nature and practice of biological control of plant pathogens. American Phytopathological Society, St Paul, Minnesota.

    Google Scholar 

  24. Cook R J and Smith A M 1977 Influence of water potential on production of ethylene in soil. Can. J. Microbiol. 23, 811–817.

    Article  PubMed  CAS  Google Scholar 

  25. Cooper R 1959 Bacterial fertilizers in the Soviet Union. Soils Fertilizers 22, 327–333.

    Google Scholar 

  26. Dart P J and Wani S P 1982. Non-symbiotic nitrogen fixation and soil fertility. In Non Symbiotic Nitrogen Fixation and Organic Matter in the Tropics. Symp. Papers I. Trans. 12th Int. Cong. Soil Sci. New Delhi, 3–27.

    Google Scholar 

  27. Dawson J O 1983 Dinitrogen fixation in forest ecosystems. Can. J. Microbiol. 29, 979–992.

    Article  CAS  Google Scholar 

  28. Day J M 1985 The measurement of N2-fixation in non-leguminous plants — a review of the problems involved. Plant and Soil.

    Google Scholar 

  29. Day J M, Harris D, Dart P J and van Berkum P 1975 The Broadbalk experiment. An investigation of nitrogen gains from non-symbiotic nitrogen fixation. In Nitrogen Fixation by Free-Living Micro-organisms. Ed. W D P Stewart. Cambridge Univ. Press, Cambridge, UK, pp 71–84.

    Google Scholar 

  30. De-Polli H, Bohlool B B, Döbereiner J 1980 Serological differentiation of Azospirillum species belonging to different host-plant specificity groups. Arch. Microbiol. 126, 217–222.

    Article  Google Scholar 

  31. De-Polli H, Matsui E, Döbereiner J and Salati E 1977 Confirmation of nitrogen fixation in two tropical grasses by 15N2 incorporation. Soil Biol. Biochem. 9, 119–123.

    Article  CAS  Google Scholar 

  32. Döbereiner J 1978 Nitrogen fixation in grass-bacteria associations in the tropics. In Isotopes in Biological Dinitrogen Fixation. IAEA, Vienna, pp 51–68.

    Google Scholar 

  33. Döbereiner J 1981 Emerging technology based on BNF by associative N2-fixing organisms. In Biological Nitrogen Fixation Technology for Tropical Agriculture. Eds P H Graham and S C Harris. Centro Internacional de Agricultura Tropical, Cali, Colombia, pp 469–483.

    Google Scholar 

  34. Döbereiner J and Day J M 1975 Nitrogen fixation in the rhizosphere of tropical grasses. In Nitrogen Fixation by Free-Living Microorganisms. Ed. W D P Stewart, Cambridge Univ. Press, Cambridge, England, pp 39–56.

    Google Scholar 

  35. Döbereiner J and Day J M 1976 Associative symbiosis in tropical grasses: characterization of microorganisms and dinitrogen-fixing sites. In Proc. 1st Int. Symp. on Nitrogen Fixation. Eds W E Newton and C J Nyman, Washington State Univ. Press, Pullman, pp 518–538.

    Google Scholar 

  36. Döbereiner J, Marriel I E and Nery M 1976 Ecological distribution of Spirillum lipoferum Beijerinck. Can. J. Microbiol. 22, 1464–1473.

    Article  PubMed  Google Scholar 

  37. Dommergues Y 1963 Evaluation du taux de fixation de l’azote dans un sol dunaire reboise en filao (Casuarina equisetifolia). Agrochimica 105, 179–187.

    CAS  Google Scholar 

  38. Eid A M, Hegazi N A, Monib M and Shokr E-S E 1984 Inoculation of grain sorghum with Azospirilla. Rev. Ecol. Biol. Sol. 21, 21–28.

    Google Scholar 

  39. Ela S W, Anderson M A and Brill W J 1982 Screening and selection of maize to enhance associative bacterial nitrogen fixation. Plant Physiol. 70, 1564–1567.

    Article  PubMed  CAS  Google Scholar 

  40. Farquhar G D, Firth P M, Wetselaar R and Weir B 1980 On the exchange of ammonia between leaves and the environment: determination of the ammonia compensation point. Plant Physiol. 66, 710–714.

    Article  PubMed  CAS  Google Scholar 

  41. Gainey P L 1949 Effect of inoculating a soil with Azotobacter upon plant growth and nitrogen balance. J. Agric. Res. 78, 405–411.

    CAS  Google Scholar 

  42. Gainey P L, Sewell M C and Latshaw W L 1930 The nitrogen balance in cultivated semi-arid Western Kansas soils. J. Am. Soc. Agron. 22, 1130–1153.

    Article  Google Scholar 

  43. Ganry F 1977 Etude en microlysimetres de la decomposition de plusiers types de residus de recolte dans un sol tropical sableux. Agron. Trop. (Paris) 32, 51–65.

    CAS  Google Scholar 

  44. Ganry F, Guirad G and Dommergues Y R 1978 Effect of straw incorporation on the yield and nitrogen balance in the sandy soil-pearl millet cropping system of Senegal. Plant and Soil 50, 647–662.

    Article  CAS  Google Scholar 

  45. Gauthier D, Diem H G, Ganry F and Dommergues Y 1985 Assessment of N2-fixation by Casuarina equisetifolia inoculated with ORS 021001 using 15N methods. Soil Biol. Biochem. in press.

    Google Scholar 

  46. Giller K E, Day J M, Dart P J and Wani S P 1984 A method for measuring the transfer of fixed nitrogen from free-living bacteria to higher plants using 15N2. J. Microbiol. Methods 2, 307–316.

    Article  Google Scholar 

  47. Giller K E, Wani S P and Day J M 1985 Use of isotope dilution to measure nitrogen fixation associated with the roots of sorghum and millet genotypes. Plant and Soil 90, 255–263.

    Article  Google Scholar 

  48. Greenland D J 1962 Denitrification in some tropical soils. J. Agric. Sci. 58, 227–233.

    Article  Google Scholar 

  49. Greenland D J and Watanabe I 1982 The continuing nitrogen enigma. In Non Symbiotic Nitrogen Fixation and Organic Matter in the Tropics. Symp. Papers I. Trans. 12th Int. Cong. Soil Sci. New Delhi, pp 123–137.

    Google Scholar 

  50. Halsall D M and Gibson A H 1985 Cellulose decomposition and associated nitrogen fixation by mixed cultures of Cellulomonas and Azospirillum or Bacillus. Appl. Environ. Microbiol. 50.

    Google Scholar 

  51. Halsall D M, Turner G L and Gibson A H 1985 Straw and xylan utilisation by pure cultures of nitrogen-fixing Azospirillum spp. Appl. Environ. Microbiol. 49, 423–428.

    PubMed  CAS  Google Scholar 

  52. Hannon N 1956 The status of nitrogen in the Hawkesbury sandstone soils and their plant communities in the Sydney district. I. Significance and level of nitrogen. Proc. Linn. Soc. NSW 81, 119–143.

    CAS  Google Scholar 

  53. Harris D and Dart P J 1973 Nitrogenase activity in the rhizosphere of Stachys sylvatica and some other dicotyledonous plants. Soil Biol. Biochem. 5, 277–279.

    Article  CAS  Google Scholar 

  54. Hegazi N A 1983 Contribution of Azospirillum spp to asymbiotic N2-fixation in soils and on roots of plants grown in Egypt. Experientia Supplementum 48, Azospirillum II, Ed. Klingmuller. Birkhauser Verlag Basel, pp 171–189.

    Google Scholar 

  55. Hegazi N A, Khawas H and Monib M 1981 Inoculation of wheat with Azospirillum under Egyptian conditions. In Current Perspectives in Nitrogen Fixation. Eds A H Gibson and W E Newton. Australian Academy of Science, Canberra, p. 493.

    Google Scholar 

  56. Hegazi N A, Monib M, Amer H A and Shokr E S 1983 Response of maize plants to inoculation with Azospirilla and (or) straw amendment in Egypt. Canad. J. Microbiol. 29, 888–894.

    Article  Google Scholar 

  57. Hess D and Grotz E-M 1977 Nitrogenase activity induced by Petunia plantlets. Z. Pflanzenphysiol. 85, 185–188.

    Google Scholar 

  58. Hill S 1978 Factors influencing the efficiency of nitrogen fixation in free-living bacteria. Ecol. Bull. Stockholm 26, 130–136.

    Google Scholar 

  59. Hill W A, Rodnev P B and Graham L A 1981 Root associated N2-fixation of sweet potato. In Current Perspectives in Nitrogen Fixation. Eds A H Gibson and W E Newton. Australian Acad. Sciences, Canberra, p 489.

    Google Scholar 

  60. Holford I C R 1980 Effect of duration of grazed lucerne on long term yields and nitrogen uptake of subsequent wheat. Aust. J. Agric. Res. 31, 239–250.

    Article  Google Scholar 

  61. Holford I C R 1981 Changes in nitrogen and organic carbon of wheat-growing soils after various periods of grazed lucerne, extended fallowing and continuous wheat. Aust. J. Soil Res. 19, 239–249.

    Article  Google Scholar 

  62. Holtz H F and Vandecaveye 1983 Organic residues and nitrogen fertilizers in relation to the productivity and humus content of Palouse silt loam. Soil Sci. 45, 143–163.

    Article  Google Scholar 

  63. ICRISAT 1979 International Crops Research Institute for the Semi-Arid Tropics. Annual Report 1977–78, Patancheru, India, 88–90.

    Google Scholar 

  64. ICRISAT 1983 International Crops Research Institute for the Semi-Arid Tropics. Annual Report 1982, Patancheru, India, 247–257.

    Google Scholar 

  65. ICRISAT 1984 International Crops Research Institute for the Semi-Arid Tropics. Annual Report 1983. Patancheru, India, 37–39.

    Google Scholar 

  66. IITA 1983 International Institute of Tropical Agriculture. Annual report for 1982, p 124, Ibadan, Nigeria.

    Google Scholar 

  67. 4th International Plant Pathology Congress, Melbourne, 1983. Abstracts.

    Google Scholar 

  68. Jenkinson D S 1977 The nitrogen economy of the Broadbalk experiments. I. Nitrogen balance in the experiments. In Rothamsted report for 1976, part 2. Bartholomew Press, Dorking, England, pp 103–109.

    Google Scholar 

  69. Jensen H L and Swaby R J 1941 Nitrogen fixation and cellulose-decomposers. Proc. Linnean Soc. NSW 66, 89–102.

    CAS  Google Scholar 

  70. Jones M J 1971 The maintenance of soil organic matter under continuous cultivation at Samaru, Nigeria. J. Agric. Sci. 77, 473–82.

    Article  Google Scholar 

  71. Jones M J 1973 The organic matter content of the Savanna soils of West Africa. J. Soil Sci. 24, 42–53.

    Article  Google Scholar 

  72. Jones M J and Bromfield A R 1970 Nitrogen in the rainfall at Samaru. Nature 227, 86.

    Article  PubMed  CAS  Google Scholar 

  73. Jones M J and Wild A 1975 Soils of the West African Savanah. Comm. Agric. Bur. Tech. Comm. Farnham Royal, UK.

    Google Scholar 

  74. Juo A S R and Lal R 1977 The effect of fallow and continuous cultivation on the chemical and physical properties of an alfisol in Western Nigeria. Plant and Soil 47, 567–584.

    Article  CAS  Google Scholar 

  75. Kapulnik Y, Kigel J, Okon Y, Nur I and Henis Y 1981 Effect of Azospirillum inoculation on some growth parameters and N-content of wheat, sorghum and Panicum. Plant and Soil 61, 65–70.

    Article  Google Scholar 

  76. Kapulnik Y, Sarig S, Nur I, Okon Y 1983 Effect of Azospirillum inoculation on yield of field grown wheat. Can. J. Microbiol. 29, 895–915.

    Article  Google Scholar 

  77. Kapulnik Y, Okon Y, Kigel J, Nur I and Henis Y 1981 Effects of temperature, nitrogen fertilisation and plant age on nitrogen fixation by Setaria italica inoculated with Azospirillum brasilense (strain CD). Plant Physiol. 68, 340–343.

    Article  PubMed  CAS  Google Scholar 

  78. Kapulnik Y, Sarig S, Nur I, Okon Y and Henis Y 1981 Yield increases in summer cereal crops of Israeli fields inoculated with Azospirillum. Expl. Agric. 17, 179–187.

    Article  CAS  Google Scholar 

  79. Kapulnik Y, Sarig S, Nur I, Okon Y and Henis Y 1982 The effect of Azospirillum inoculation on growth and yield of corn. Israel J. Bot. 31, 247–255.

    Google Scholar 

  80. Karunakar P D and Rajgopalan T 1936 Azotobacter inoculation of seeds of cereals — experiments with sorghum. Proc. Assoc. Econ. Biologists, 1–10.

    Google Scholar 

  81. Kipe-Nolt J, Avalakki U and Dart P J 1985 Effect of sorghum genotype on root exudation and nitrogenase activity. Soil Biol. Biochem. in press.

    Google Scholar 

  82. Klucas R V and Pedersen W 1980 Nitrogen fixation associated with roots of sorghum and wheat. In Nitrogen Fixation, II. Eds W E Newton and W H Orme-Johnson. University Press, Baltimore, pp 243–255.

    Google Scholar 

  83. Klubek B and Skujins 1981 Heterotrophic N2-fixation in arid soil crusts. Soil Biol. Biochem. 12, 229–236.

    Article  Google Scholar 

  84. Kosslak R M and Bohlool B B 1983 Prevalence of Azospirillum spp in the rhizosphere of tropical plants. Can. J. Microbiol. 29, 649–652.

    Article  Google Scholar 

  85. Krishnamoorthy K K and Ravikumar T V 1973 Permanent Manurial Experiments Conducted at Coimbatore. Tamil Nadu Agricultural Univ. Coimbatore, India.

    Google Scholar 

  86. Lal R and Kang B T 1982 Management of organic matter in soils of the tropics and subtropics. In Non Symbiotic Nitrogen Fixation and Organic Matter in the Tropics. Symp. Papers I. Trans. 12th Int. Cong. Soil Sci. New Delhi, pp 152–178.

    Google Scholar 

  87. Lal R, Wilson G F and Okigbo B N 1979 Changes in properties of an alfisol produced by various crop covers. Soil Sci. 127, 377–382.

    Article  CAS  Google Scholar 

  88. Normand P and Lalonde M 1985 The genetics of actinorhizal Frankia: A review Plant and Soil 90, 427–451.

    Google Scholar 

  89. Lee K J and Gaskins M H 1983 Increased root exudation of 14C-compounds by sorghum seedlings inoculated with nitrogen-fixing bacteria. Plant and Soil 69, 391–399.

    Article  Google Scholar 

  90. Lethbridge G and Davidson M S 1983 Root-associated nitrogen-fixing nutrition of wheat estimated by 15N isotope dilution method. Soil Biol. Biochem. 15, 365–374.

    Article  Google Scholar 

  91. Lethbridge G, Davidson M S and Sparling G P 1982 Critical evaluation of the acetylene reduction test for estimating the activity of nitrogen-fixing bacteria associated with the roots of wheat and barley. Soil Biol. Biochem. 14, 27–35.

    Article  CAS  Google Scholar 

  92. Lin W, Okon Y and Hardy R W F 1983 Enhanced mineral uptake by Zea mays and Sorghum bicolor roots inoculated with Azospirillum brasilense. Appl. Environ. Microbiol. 45, 1775–1779.

    PubMed  CAS  Google Scholar 

  93. Lynch J M and Harper S H T 1983 Straw as a substrate for cooperative nitrogen fixation. J. Gen. Microbiol. 129, 251–253.

    Google Scholar 

  94. Mariakulandai A and Thyagarajan S R 1958 Long term manurial experiments at Coimbatore. J. Indian Soc. Soil Sci. 7, 263–272.

    Google Scholar 

  95. Martin J K and Kemp J R 1980 Carbon loss from roots of wheat cultivars. Soil Biol. Biochem. 2, 551–554.

    Article  Google Scholar 

  96. Matthews S W, Schank S C, Aldrich H C and Smith R L 1983 Peroxidase-antiperoxidase labelling of Azospirillum brasilense in field grown pearl millet. Soil Biol. Biochem. 15, 697–703.

    Article  Google Scholar 

  97. Meshram S V and Shende S T 1982 Total nitrogen uptake by maize with Azotobacter inoculation. Plant and Soil 69, 275–280.

    Article  CAS  Google Scholar 

  98. Mertens T and Hess D 1984 Yield increases in spring wheat (Triticum aestivum L.) inoculated with Azospirillum lipoferum under greenhouse and field conditions of a temperate region. Plant and Soil 82, 87–99.

    Article  Google Scholar 

  99. Mishustin E N and Naumova A N 1962 Bacterial fertilizers, their effectiveness and mode of action. Mikrobiologiya 31, 543–555.

    Google Scholar 

  100. Mohan Rao N V and Narasimham R L 1952 The nitrogen nutrition of sugar cane. Madras Agric. J. 39, 243–255.

    Google Scholar 

  101. Moore A W 1963 Nitrogen fixation in latosolic soil under grass. Plant and Soil 19, 127–138.

    Article  Google Scholar 

  102. Moore A W 1966 Non-symbiotic nitrogen fixation in soil and soil-plant systems. Soils Fert. 29, 1185–1207.

    Google Scholar 

  103. Morris D R, Zuberer D A and Weaver R W 1985 Nitrogen fixation by intact grass-soil cores using 15N and acetylene reduction. Soil Biol. Biochem. 17, 87–91.

    Article  CAS  Google Scholar 

  104. Neyra C A and Dobereiner I 1977 Nitrogen fixation in grasses. Adv. Agron. 29, 1–38.

    Article  CAS  Google Scholar 

  105. Nohrstedt H-O 1983 Conversion factor between acetylene reduction and nitrogen fixation in soil: effect of water content and nitrogenase activity. Soil Biol. Biochem. 15, 275–279.

    Article  CAS  Google Scholar 

  106. Nohrstedt H-O 1983 Natural formation of ethylene in forest soils and methods to correct results given by the acetylene-reduction assay. Soil Biol. Biochem. 15, 281–286.

    Article  CAS  Google Scholar 

  107. Nohrstedt H-O 1984 Carbon monoxide as an inhibitor of N2 ase activity (C2H2) in control measurements of endogenous formation of ethylene by forest soils. Soil Biol. Biochem. 16, 19–22.

    Article  CAS  Google Scholar 

  108. Nur I, Okon Y and Henis Y 1980 Comparative studies of nitrogen-fixing bacteria associated with grasses in Israel with Azospirillum brasilense. Can. J. Microbiol. 26, 714–718.

    Article  PubMed  CAS  Google Scholar 

  109. Nur I, Okon Y and Henis Y 1980 An increase in nitrogen content of Setaria italica and Zea mays inoculated with Azospirillum. Can. J. Microbiol. 26, 482–485.

    Article  PubMed  CAS  Google Scholar 

  110. Nye P H 1958 The relative importance of fallows and soils in storing plant nutrients in Ghana. J. West Afr. Sci. Asoc. 4, 31–39.

    CAS  Google Scholar 

  111. Nye P H and Greenland D J 1960 The soil under shifting cultivation. Comm. Bureau Soils Tech. Comm. 51, Harpenden, England.

    Google Scholar 

  112. Okon Y, Albrecht S L and Burris R H 1976 Carbon and ammonia metabolism of Spirillum lipoferum. J. Bateriol. 128, 592–597.

    CAS  Google Scholar 

  113. Okon Y, Albrecht S L and Burris R H 1977 Methods for growing Spirillum lipoferum and for counting it in pure culture and in association with plants. Appl. Environ. Microbiol. 33, 85–88.

    PubMed  CAS  Google Scholar 

  114. Okon Y, Houchins J D, Albrecht S L and Burris R H 1977 Growth of Spirillum lipoferum at constant partial pressures of oxygen and the properties of its nitrogenase in cell free extracts. J. Gen. Microbiol. 98, 87–93.

    PubMed  CAS  Google Scholar 

  115. Parker C A 1957 Non-symbiotic nitrogen-fixing bacteria in soil. III. Total nitrogen changes in a field soil. J. Soil Sci. 8, 48–59.

    Article  CAS  Google Scholar 

  116. Patriquin D G, Dobereiner J and Jain D K 1983 Sites and processes of association between diazotrophs and grasses. Can. J. Microbiol. 29, 900–915.

    Article  Google Scholar 

  117. Patriquin D G, Gracioli L A and Rushel A P 1980 Nitrogenase activity of sugar cane propagated from stem cuttings in sterile vermiculite. Soil Biol. Biochem. 12, 413–417.

    Article  CAS  Google Scholar 

  118. Pollman A A and McColl J C 1982 Nitrogen fixation in the rhizosphere and rhizoplane of barley. Plant and Soil 69, 341–352.

    Article  Google Scholar 

  119. Purchase B S 1978 Nitrogen fixation associated with grasses. A potential source of nitrogen for Rhodesian agriculture. Rhodesian Agric. J. 75, 99–104.

    Google Scholar 

  120. Rai S N and Gaur A C 1982 Nitrogen fixation by Azospirillum spp and effect of Azospirillum lipoferum on the yield and N-uptake of wheat crop. Plant and Soil 69, 233–238.

    Article  CAS  Google Scholar 

  121. Rao A V and Venkateswarlu B 1982 Associative symbiosis of Azospirillum lipoferum with dicotyledonous succulent plants of the Indian desert. Can. J. Microbiol. 28, 778–782.

    Article  CAS  Google Scholar 

  122. Rennie R J and Larsen R I 1979 Dinitrogen fixation associated with disomic chromosome substitution lines of spring wheat. Can. J. Bot. 57, 2771–2775.

    Article  CAS  Google Scholar 

  123. Reynders L and Vlassak K 1982 Use of Azospirillum brasilense as biofertilizer in intensive wheat cropping. Plant and Soil 66, 217–223.

    Article  Google Scholar 

  124. Ridge E H and Rovira A D 1968 Microbial inoculation of wheat. Trans. 9th Int. Cong. Soil. Sci. 111, 473–481.

    Google Scholar 

  125. Roger P A and Reynaud P A 1982 Free living blue-greeen algae in tropical soils. In Microbiology of Tropical Soils and Plant Productivity. Eds Y R Dommergues and H G Diem. Martinus Nijhoff/Dr. W. Junk, The Hague. pp 147–168.

    Google Scholar 

  126. Roper M 1983 Field measurements of nitrogenase activity in soils amended with wheat straw. Aust. J. Agr. Res. 34, 725–739.

    Article  Google Scholar 

  127. Roper M 1984 Straw decomposition and nitrogenase activity (C2H2 reduction): effects of soil moisture and temperature. Soil Biol. Biochem. 17, 65–71.

    Article  Google Scholar 

  128. Rubenchik L I 1963 Azotobacter and its use in agriculture. Jerusalem, Israel Program for Scientific Translations. pp. 278.

    Google Scholar 

  129. Ruschel A P and Vose P 1982 Nitrogen cycling in sugar cane. Plant and Soil 67, 139–146.

    Article  CAS  Google Scholar 

  130. Ruschel A P, Victoria R L, Salati E and Henis Y 1978 Nitrogen fixation in sugar cane (Saccharum officinarum L.). Ecol. Bull. Stockholm 26, 297–303.

    Google Scholar 

  131. Sarig S, Kapulnik Y, Nur I and Okon Y 1984 Response of non-irrigated Sorghum bicolor to Azospirillum inoculation. Expl. Agric. 20, 59–66.

    Article  Google Scholar 

  132. Sauerbeck D and Johnen B G 1977 Root formation and decomposition during plant growth. In Proc. International Symposium on Soil Organic Matter Studies. I. IAEA, Vienna, pp 141–148.

    Google Scholar 

  133. Schank S C, Day J M and De Lucas E D 1977 Nitrogenase activity, nitrogen content, in vitro digestibility and yield of 30 tropical forage grasses in Brazil. Trop. Agric. 54, 119–125.

    CAS  Google Scholar 

  134. Schank S C, Smith R L and Littell R C 1983 Establishment of associative N2-fixing systems. Biol. Crop Sci. Soc. Fla. Proc. 42, 113–117.

    CAS  Google Scholar 

  135. Schank S C, Smith R L, Weiser G C, Zuberer D A, Banton J H, Quesenberry K H, Tyler M E, Milam J R and Littell R 1979 Fluorescent antibody technique to identify Azospirillum brasilense associated with roots of grasses. Soil Biol. Biochem. 11, 287–297.

    Article  Google Scholar 

  136. Schank S C, Weier K L and MacRae I C 1981 Plant yield and nitrogen content of a digit-grass in response to Azospirillum inoculation. Appl. Environ. Microbiol. 41, 342–345.

    PubMed  CAS  Google Scholar 

  137. Shearman R C, Pedersen W L, Klucas R V and Kinbacher E J 1979 Nitrogen fixation associated with ‘Park’ Kentucky bluegrass (Poa pratensis L.). Can J. Microbiol. 25, 1197–1200.

    Article  PubMed  CAS  Google Scholar 

  138. Schroth M N and Hancock J G 1981 Selected topics in biological control. Annu. Rev. Microbiol. 35, 453–476.

    Article  PubMed  CAS  Google Scholar 

  139. Silvester W B 1977 Dinitrogen fixation by plant associations excluding legumes. In A Treatise on Dinitrogen Fixation IV. Agronomy and Ecology. Eds R W F Hardy and A H Gibson, Wiley, New York, pp 141–190.

    Google Scholar 

  140. Smith R L, Bouton J H, Schank S C, Quesenberry K H, Tyler M E, Milam J R, Gaskins M H and Littell R C 1976 Nitrogen fixation in grasses inoculated with Spirillum lipoferum. Science 193, 1003–1005.

    Article  PubMed  CAS  Google Scholar 

  141. Smith R L, Schank S C, Bouton J H and Quesenberry K H 1978 Yield increases of tropical grasses after inoculation with Spirillum lipoferum. Ecol. Bull. Stockholm 26, 380–385.

    Google Scholar 

  142. Smith R L, Schank S C and Littell R C 1984 The influence of shading on associative N2-fixation. Plant and Soil 80, 43–52.

    Article  CAS  Google Scholar 

  143. Smith R L, Schank S C, Milam J R and Baltensperger 1984 Responses of Sorghum and Pennisetum species to the N2-fixing bacterium Azospirillum brasilense. Appl. Env. Microbiol. 47, 1331–1336.

    CAS  Google Scholar 

  144. Smith R L, Schank S C, Milam J R and Litteli R C 1982 Statewide search for highly active associative N2-fixation systems. Soil Crop Sci. Soc. Fla. Proc. 41, 122–126.

    Google Scholar 

  145. Staphorst J L and Strijdom B W 1978 Diazotrophic bacteria associated with pasture and veld grasses, sugar cane, maize and sorghum in South Africa. Phytophylactica 10, 13–16.

    Google Scholar 

  146. Stephen M P, Pedrosa F D and Döbereiner J 1981 Physiological studies with Azospirillum spp. In Associative N2-Fixation. Eds P B Vose and A P Ruschel. C R C Press, Boca Raton, Fla. pp 7–13.

    Google Scholar 

  147. Subba Rao N S 1983 Nitrogen-fixing bacteria associated with plantation and orchard plants. Can. J. Microbiol. 29, 863–866.

    Article  Google Scholar 

  148. Stewart W D P, Sampaio M J, Isichei A D and Sylvester-Bradley R 1978 Nitrogen fixation by soil algae of temperate and tropical soils. In Limitations and Potentials for Biological Nitrogen Fixation in the Tropics. Eds J. Döbereiner, R H Burris and A Hollander. Plenum, New York pp 41–63.

    Google Scholar 

  149. Taylor R W 1979 Response of two grasses to inoculation with Azospirillum spp in a Bahamian soil. Trop. Agric. 56, 361–365.

    Google Scholar 

  150. Torrey J G 1978 Nitrogen fixation by actinomycete-nodulated angiosperms. BioScience 28, 586–592.

    Article  Google Scholar 

  151. Torrey J G 1982 Casuarina: actinorhizal nitrogen fixing trees of the topics. In Biological Nitrogen Fixation Technology for Tropical Agriculture. Eds P H Graham and S C Harris, Centro Internacional de Agricultura Tropical, Cali, Colombia, pp 427–439.

    Google Scholar 

  152. Trinick M 1981 The effective Rhizobium symbiosis with the non-legume Parasponia andersonii. In Current Perspectives in Nitrogen Fixation. Eds A H Gibson and W E Newton, Australian Academy of Science, Canberra, p 480.

    Google Scholar 

  153. Tyler M E, Milam J R, Smith R L, Schank S C and Zuberer D A 1979 Isolation of Azospirillum from diverse geographic regions. Can. J. Microbiol. 25, 693–697.

    Article  PubMed  CAS  Google Scholar 

  154. Upadhyaya M N 1983 Root associated nitrogen fixation in finger millet (Eleusine coracana Gaertn). MSc thesis, Dept. Agric. Microbiology, The University of Agricultural Sciences, Bangalore, India.

    Google Scholar 

  155. Vallis I 1973 Sampling for soil nitrogen changes in large areas of grazed pastures. Commun. Soil Sci. Plant Anal. 4, 163–170.

    Article  Google Scholar 

  156. van Berkum P 1980 Evaluation of acetylene reduction by excised roots for the determination of nitrogen fixation in grasses. Soil Biol. Biochem. 12, 141–145.

    Article  Google Scholar 

  157. van Berkum P 1984 Potential for non-symbiotic and associative dinitrogen fixation. In Nitrogen in Crop Production. ASA-CSSA-SSSA, Madison, Wisc. 145–163.

    Google Scholar 

  158. Van Berkum P and Day J M 1980 Nitrogenase activity associated with soil cores of grasses in Brazil. Soil Biol. Biochem. 12, 137–140.

    Article  Google Scholar 

  159. van Berkum P and Bohlool B B 1980 Evaluation of nitrogen fixation by bacteria in association with roots of tropical grasses. Microbiol. Rev. 44, 491–517.

    PubMed  Google Scholar 

  160. Vargas M A T and Harris R F 1977 Effects of oxygen on the energy efficiency of N2-fixation by Spirillum lipoferum in batch and continuous culture. In Limitations and Potentials for Biological Nitrogen Fixation in the Tropics. Eds J Döbereiner, R. H Burris A Hollander. Plenum Press, NY. pp 373–374.

    Google Scholar 

  161. Venkataraman G S 1982 Nitrogen fixation by blue-green algae and its economic importance. In Non-Symbiotic Nitrogen Fixation and Organic Matter in the Tropics. Symp. Papers I. Trans. 12th Int. Cong. Soil Sci. New Delhi. pp 69–82.

    Google Scholar 

  162. Wani S P, Dart P J and Upadhyaya M N 1983 Factors affecting nitrogenase activity (C2H2 reduction) associated with sorghum and millet estimated using the soil core assay. Can. J. Microbiol. 29, 1063–1069.

    Article  CAS  Google Scholar 

  163. Wani S P, Chandrapalaiah S and Dart P J 1985 Response of pearl millet cultivars to inoculation with nitrogen fixing bacteria. Expl. Agric. in press.

    Google Scholar 

  164. Wani S P, Upadhyaya M N and Dart P J 1984 An intact plant assay for estimating nitrogenase activity (C2H2 reduction) of sorghum and millet. Plant and Soil 82, 15–29.

    Article  CAS  Google Scholar 

  165. Watanabe I 1985 Nitrogen fixation by nonlegumes in tropical agriculture with special reference to wetland rice. Plant and Soil 90, 343–357.

    Article  Google Scholar 

  166. Weier K L 1980 Nitrogenase activity associated with three tropical grasses growing in undisturbed soil cores. Soil Biol. Biochem. 12, 131–136.

    Article  CAS  Google Scholar 

  167. Wheeler C T et al. 1985 The improvement and utilization in forestry of nitrogen fixation by actinorhized plants with special reference to Alnus in Scotland. Plant and Soil 90, 393–406.

    Article  Google Scholar 

  168. Whipps J M 1984 Environmental factors affecting the loss of carbon from the roots of wheat and barley seedlings. J. Exp. Bot. 35, 767–773.

    Article  CAS  Google Scholar 

  169. Whipps J M and Lynch J M 1983 Substrate flow and utilization in the rhizosphere of cereals. New Phytol. 95, 605–623.

    Article  CAS  Google Scholar 

  170. Witty J F 1979 Acetylene reduction assay can overestimate nitrogen-fixation in soil. Soil Biol. Biochem. 11, 209–210.

    Article  CAS  Google Scholar 

  171. Witty J F 1979 Algal nitrogen fixation on temperate arable fields. Algal inoculation experiments. Plant and Soil 52, 165–183.

    Article  CAS  Google Scholar 

  172. Witty J F, Day J M and Dart P J 1977 The nitrogen economy of the Broadbalk experiments. II. Biological nitrogen fixation. In Rothamsted report for 1976, part 2. Bartholomew Press, Dorking, pp 111–118.

    Google Scholar 

  173. Witty J F, Keay P J, Froggat P J and Dart P J 1979 Algal nitrogen fixation on temperate arable fields: the Broadbalk Experiment. Plant Soil 52, 151–164.

    Article  CAS  Google Scholar 

  174. Wood L V, Klucas R V and Sherman R C 1981 Nitrogen fixation (acetylene reduction) by Klebsiella pneumoniae in association with ‘Park’ Kentucky bluegrass (Poa pratensis L.) Can. J. Microbiol. 27, 52–56.

    Article  PubMed  CAS  Google Scholar 

  175. Wright S F and Weaver R W 1982 Inoculation of forage grasses with N2-fixing Enterobacteriaceae. Plant and Soil 65, 415–419.

    Article  CAS  Google Scholar 

  176. Wright S F, Weaver R W and Holt E C 1981 Acetylene reduction activity of Panicum coloratum L. seedlings inoculated with Azotobacter and treated with various concentrations of fixed nitrogen. Soil Biol. Biochem. 13, 325–326.

    Article  CAS  Google Scholar 

  177. Yadav R L and Sharma R K 1981 Recovery of fertilizer nitrogen applied to sugar cane and its balance in the soil. Haryana Agric. Univ. J. Res. 11, 18–22.

    Google Scholar 

  178. Yahaolm E, Kapulnik Y and Okon Y 1984 Response of Setaria italica to inoculation with Azospirillum brasilense as compared to Azotobacter chroococcum. Plant and Soil 82, 77–85.

    Article  Google Scholar 

  179. Zambre M A, Konde B K and Sonar K R 1984 Effect of Azotobacter chroococcum and Azospirillum brasilense inoculation under graded levels of nitrogen on growth and yield of wheat. Plant and Soil 79, 61–67.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Dart, P.J. (1986). Nitrogen fixation associated with non-legumes in agriculture. In: Skinner, F.A., Uomala, P. (eds) Nitrogen Fixation with Non-Legumes. Developments in Plant and Soil Sciences, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4378-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4378-0_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8446-8

  • Online ISBN: 978-94-009-4378-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics