Skip to main content
  • 1962 Accesses

Abstract

Because of the requirements for sufficient stiffness, sheet structures usually consist of stringer-stiffened panels. The mort prominent examples can be found in aircraft structures, viz. the wing and fuselage skin panels. The skin material is a relatively thin sheet, to which evenly spaced stringers are attached by means of riveting or adhesive bonding. When considering crack propagation and fracture of thin sheets, it is necessary to take into account the effect of the stiffening elements if these are present. The problem is one of plane stress, since it concerns sheets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grief, R, and Sanders, J. L., The effect of a stringer on the stress in a cracked sheet, Harvard University TR 18 (1963).

    Google Scholar 

  2. Vlieger, H. and Broek, D., Residual strength of cracked stiffened panels. Built up sheet structures, AGARD Fracture Mechanics Survey (1974).

    Google Scholar 

  3. Vlieger, H., Residual strength of cracked stiffened panels, Eng. Fracture Mechanics, 5 (1973) pp. 447–478.

    Article  Google Scholar 

  4. Poe, C. C., Fatigue crack propagation in stiffened panels, ASTM STP, (1971) pp. 79–97.

    Google Scholar 

  5. Poe, C. C., The effect of riveted and uniformly spaced stringers on the stress intensity factor of a cracked sheet, Air Force Conf. on Fracture and Fatigue (1969), AFFDLTR-70-144 (1970) pp. 207–216.

    Google Scholar 

  6. Swift, T. and Wang, D. Y., Damage tolerant design analysis methods and test verification of fuselage structure, Air Force Conf. on Fatigue and Fracture (1969), AFFDL-TR-70-144, (1970) pp. 653–683.

    Google Scholar 

  7. Swift, T., Development of the fail-safe design features of the DC-10, ASTM STP 486, (1971) pp. 164–214.

    Google Scholar 

  8. Creager, H. and Liu, A. F., The effect of reinforcements on the slow stable tear and catastrophic failure of thin metal sheet, AIAA Paper 71-113 (1971).

    Google Scholar 

  9. Love, A. E. H., A treatise on the mathematical theory of elctsticity, Cambridge Un. Press, 4th Ed., 1944.

    Google Scholar 

  10. Romualdi, P., Frasier, J. T. and Irwin, G. R., Crack-extension-force near a riveted stringer, Naval Research Laboratory Memo no. 4956 (1957).

    Google Scholar 

  11. Crichlow, W. J., The ultimate strength of damaged structure, Full-Scale Fatigue Testing of Aircraft Structures, Plantema and Schijve, Eds., pp. 149–209. Pergamon (1961).

    Google Scholar 

  12. Crichlow, W. J., Stable crack propagation fail-safe design criteria-analytical methods and test procedures, AIAA Paper 69-215 (1969).

    Google Scholar 

  13. Troughton, A. J. and McStay, J., Theory and practice in fail-safe ring design. Current aeronautical fatigue problems, pp. 429–462. Schijve, Heath-Smith, Welbourne, Eds., Pergamon (1965).

    Google Scholar 

  14. Liu, A. F. and Ekvall, J. C., Material toughness and residual strength of damage tolerant aircraft structures, ASTM STP 486, (1971) pp. 98–121.

    Google Scholar 

  15. Hardrath, H. F. et al., Fatigue crack propagation in aluminium alloy box beams, NACA TN 3856 (1956),

    Google Scholar 

  16. Hardrath, H. F. and Leybold, H. A., Further investigations of fatigue crack propagation in aluminium alloy box beams, NACA TN 4246 (1958).

    Google Scholar 

  17. Swift, T., The effect of fastener flexibility and stiffener geometry on the stress intensity of stiffened cracked sheet. Prospects of Fracture Mechanics, pp. 419–436. Sih, Van Elst, Broek Ed. Noordhoff (1974).

    Google Scholar 

  18. Swift, T., Damage tolerance analysis of redundant structures, AGARD-LS-97, (1978) pp. 5.01–5.34.

    Google Scholar 

  19. Vlieger, H., Built-up structures. Practical Applications of fracture mechanics, AGARDograph 257, (1980) pp. 3.1–3.113.

    Google Scholar 

  20. Bartelds, G. and Van de Veer, I., Elastic energy release rates in cracked sandwich panels. Nat. Aerospace Inst. Amsterdam, TR 72028 (1972).

    Google Scholar 

  21. Smith, S. H., Porter, T. R. and Engstrom, W. L., Fatigue crack propagation behaviour and residual strength of bonded reinforced lamellated and sandwich panels. AFFDL TR. 70-144, (1970) pp. 611–634.

    Google Scholar 

  22. Broek, D., The potentiel of crack arrest in ships. Submitted for publication in Eng. Fracture Mech.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Martinus Nijhoff Publishers, The Hague

About this chapter

Cite this chapter

Broek, D. (1982). Stiffened sheet structures. In: Elementary engineering fracture mechanics. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4333-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4333-9_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8425-3

  • Online ISBN: 978-94-009-4333-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics