Skip to main content

Organic Contaminants in Soils and Groundwaters

  • Chapter
Organic Contaminants in the Environment

Part of the book series: Environmental Management Series ((EMISS,volume 19))

Abstract

In 1843 a field experiment was started at Rothamsted to compare the effects of different manures and inorganic fertilisers. Each plot on the field was furnished with tile drains and in 1866 Lawes et al 1. analysed the runnings from the drains for plant nutrient chemicals. These and similar data were then used to compile a multivolume report on water pollution2. Despite continuing public interest in water quality, such a field experiment even today would be considered far-sighted and quite elaborate. In 1870 Lawes et al 1. built outdoors three brick drain gauges, which we would now call lysimeters, each 2·2 x 1·8 m and one of which was 1·5 m deep. Again, drainage water was quantitatively analysed for plant nutrient chemicals and the analytical results were related to rainfall and evaporation data. One of Lawes’ conclusions from these experiments was that there were two types of drainage, one of which was rapid and occurred through large continuous and deep pores, expecially burrows made by worms. The second occurred through the saturated body of the soil. These conclusions are analogous to contemporary ideas of mobile and immobile categories of water or fissure flow of water which form the basis of some computer simulation models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lawes, J. B., Gilbert, J. H. A. & Warington, R., On the amount and composition of the rain and drainage—waters collected at Rothamsted. J. Royal Agric. Soc. 2nd Series (1881) 241–79.

    Google Scholar 

  2. Frankland, E. & Armstrong, H. E., On the analysis of potable waters. J. Chem. Soc. (1868) new series Vol. VI, 77–108.

    Google Scholar 

  3. Goring, C. A. I. & Hamaker, J. W., Organic Chemicals in the Soil Environment, 2 Vols. Marcel Dekker, New York, 1972.

    Google Scholar 

  4. Hern, S. C. & Melancon, S. M., Vadose Zone Modeling of Organic Pollutants. Lewis Publishers, Chelsea, Michigan, 1986.

    Google Scholar 

  5. Nicholls, P. H., Predicting the availability of soil-applied pesticides. Aspects of Applied Biology 21, Comparing laboratory and field pesticide performance (1989) 173–84.

    Google Scholar 

  6. Nicholls, P. H., Factors influencing entry of pesticides into soil water. Pestic. Sci., 22 (1988) 123–37.

    Article  CAS  Google Scholar 

  7. Briggs, G. G., Adsorption of pesticides by some Australian soils. Aust. J. Soil Res., 19 (1981) 61–8.

    Article  CAS  Google Scholar 

  8. Lyman, W. J., Reehl, W. F. & Rosenblatt, D. H., Handbook of Chemical Property Estimation Methods. McGraw-Hill, New York, 1982.

    Google Scholar 

  9. Mingelgrin, U. & Gerstl, Z., Reevaluation of partitioning as a mechanism of nonionic chemical adsorption in soils. J. Environ. Qual., 12 (1983) 1–11.

    Article  CAS  Google Scholar 

  10. Mustafa, M. A. & Gamar, Y., Adsorption and desorption of diuron as a function of soil properties. Soil Sci. Soc. Amer. Proc., 36 (1972) 561–5.

    Article  CAS  Google Scholar 

  11. Connell, D.W., Quantitative structure-activity relationships and the ecotoxicology of chemicals in aquatic systems. In ISI Atlas of Science: Plants & Animals, Vol. 1. 1988, pp. 221–5.

    Google Scholar 

  12. Collander, R., The distribution of organic compounds between iso-butanol and water. Acta Chem. Scand., 4 (1950) 1085–98.

    Article  CAS  Google Scholar 

  13. Yaron, B. & Saltzman, S., Influence of water and temperature on adsorption of parathion by soils. Soil Sci. Soc. Amer. Proc., 36 (1972) 583–6.

    Article  CAS  Google Scholar 

  14. Puri, R. K., Clevenger, T. E., Kapila, S., Yanders, A. F. & Malhotra, R. K., Studies of parameters affecting translocation of tetrachlorodibenzo-p-dioxin in soil. Chemosphere, 18 (1989) 1291–6.

    Article  Google Scholar 

  15. Kapila, S., Yanders, A. F., Orazio, C. E., Meadows, J. E., Cerlesi, S. B. & Clevenger, T. E., Field and laboratory studies on the movement and fate of tetrachlorodibenzo-p-dioxin in soil. Chemosphere, 18 (1989) 1297–304.

    Article  Google Scholar 

  16. Nicholls, P. H., Briggs, G. G. & Evans, A. A., The influence of water solubility on the movement and degradation of simazine in a fallow soil. Pestic. Sci., 24 (1984) 37–49.

    CAS  Google Scholar 

  17. Hance, R. J., Adsorption of glyphosate by soils. Pestic. Sci., 7 (1976) 363–6.

    Article  CAS  Google Scholar 

  18. Hayes, M. H. B., Adsorption of triazine herbicides on soil organic matter including a short review on soil organic matter chemistry. Residue Rev., 32 (1970) 131–74.

    CAS  Google Scholar 

  19. Hartley, G. S. & Graham-Bryce, I. J., Physical Principles of Pesticide Behaviour, 2 Vols. Academic Press, London, 1980.

    Google Scholar 

  20. Knight, B. A. G., Coutts, J. & Tomlinson, T. E., Sorption of ionised pesticides by soil. In Sorption and Transport Processes in Soils, SCI Monograph 37, Society of Chemical Industry, London, 1970, pp. 54–62.

    Google Scholar 

  21. Perrin, D. D., Boyd, Dempsey & Serjeant, E.P., pKa Prediction for Organic Acids and Bases. Chapman and Hall, London, 1981.

    Google Scholar 

  22. Schofield, R. K., Calculation of surface areas from measurements of negative adsorption. Nature, 160 (1947) 408–10.

    Article  Google Scholar 

  23. Worthing, C. R., The Pesticide Manual, 8th edn. British Crop Protection Council, Thornton Heath, 1987.

    Google Scholar 

  24. Boyd, S. A., Miksell, M. D. & Lee, J. F., Chorophenols in soils. In Reactions and Movement of Organic Chemicals in Soils, ed. B. L. Sawhney & K. Brown. Soil Science Society of America, Madison, 1989, pp. 209–28.

    Google Scholar 

  25. Butler, A. R., Two cheers for Hammett. Chemistry in Britain, 25 (1989) 997–8.

    Google Scholar 

  26. Boesten, J. J. T. I., Behaviour of Herbicides in Soil: Simulation and Experimental Assessment. Institute for Pesticide Research, Wageningen, 1986.

    Google Scholar 

  27. Walker, A., Evaluation of a simulation model for prediction of herbicide movement and persistence in soil. Weed Res., 27 (1987) 143–52.

    Article  CAS  Google Scholar 

  28. Graham-Bryce, I. J., Diffusion of organophosphorus insecticides in soils. J. Sci. Food Agric., 20 (1969) 489–94.

    Article  CAS  Google Scholar 

  29. Freeman, R. A. & Schroy, R. A., Comparison of TCDD transport at Times Beach and at Eglin AFB. Chemosphere, 18 (1989) 1305–12.

    Article  Google Scholar 

  30. Graham-Bryce, I. J., The behaviour of pesticides in soil. In The Chemistry of Soil Processes, ed. D. J. Greenland & M. H. B. Hayes. John Wiley, Chichester, 1981, pp. 621–70.

    Google Scholar 

  31. Rao, P. S. C., Jessup, R. E. & Addiscott, T. M., Experimental and theoretical aspects of solute diffusion in spherical and nonspherical aggregates. Soil Sci., 133 (1982) 342–9.

    Article  CAS  Google Scholar 

  32. Bouma, J., Soil Survey and the Study of Water in Unsaturated Soil. Netherlands Soil Survey Institute, Wageningen, 1977.

    Google Scholar 

  33. Nicholls, P. H., Bromilow, R. H. & Addiscott, T. M., Measured and simulated behaviour of fluometuron, aldoxycarb and chloride ion in a fallow structured soil. Pestic. Sci., 13 (1982) 475–83.

    Article  CAS  Google Scholar 

  34. Rao, P. S. C. & Wagenet, R. J., Spatial variability of pesticides in field soils; methods for data analysis and consequences. Weed Sci., 33 (Suppl. 2) (1985) 18–24.

    CAS  Google Scholar 

  35. Addiscott. T. M., A simple computer model for leaching in structured soils. J. Soil Sci., 28 (1977) 554–63.

    Article  CAS  Google Scholar 

  36. Nicholls, P. H., Walker, A. & Baker, R. J., Measurement and simulation of the movement and degradation of atrazine and metribuzin in a fallow soil. Pestic. Sci., 12 (1982) 484–94.

    Article  Google Scholar 

  37. Hill, I. R., Microbial transformations of pesticides. In Pesticide Microbiology, ed. I. R. Hill & S. J. L. Wright. Academic Press, London, 1978, pp. 137–245.

    Google Scholar 

  38. Allen, R. & Walker, A., Effects of microbial inhibitors on degradation rates of metamitron, metazachlor and metribuzin in soil. Pestic. Sci., 22 (1988) 297–305.

    Article  CAS  Google Scholar 

  39. Furmidge, C. C. L. & Osgerby, J. M., Persistence of herbicides in soil. J. Sci. Food Agric, 18 (1967) 269–73.

    Article  CAS  Google Scholar 

  40. Briggs, G. G., Factors affecting degradation of pesticides in soil. In Pesticide Residues. Ministry of Agriculture Fisheries and Food, HMSO, London, 1983, pp. 12–19.

    Google Scholar 

  41. Nicholls, P. H., Evans, A. A. & Walker, A., The behaviour of chlorsulfuron and metsulfuron in soils in relation to incidents of injury to sugar beet. Proc. Brit. Crop Prot. Conf.-Weeds, 2 (1987) 549–56.

    Google Scholar 

  42. Hurle, K. & Walker, A., Persistence and its prediction. In Interactions between Herbicides and the Soil, ed. R. J. Hance, Academic Press, London, 1980, pp. 83–122.

    Google Scholar 

  43. Walker, A. & Barnes, A., Simulation of herbicide persistence in soil; a revised computer model. Pestic. Sci., 12 (1981) 123–132.

    Article  CAS  Google Scholar 

  44. Duffy, M. J., Hanafey, M. K. & Linn, D. M., The use of a simulation model to assess the effect of drought conditions on the degradation of chlorimuron ethyl. Meeting of Weed Science Society of America, Abstracts, 1989, p. 129.

    Google Scholar 

  45. Bromilow, R. H., Briggs, G. G., Williams, M. R., Smelt, J. H., Tuinstraa L. G. M. Th. & Traag, W. A., The role of ferrous ions in the rapid degradation of oxamyl, methomyl and aldicarb in anaerobic soils. Pestic. Sci., 17 (1986) 535–47.

    Article  CAS  Google Scholar 

  46. Reyes, C. C. & Zimdahl, R. L., Mathematical description of trifluralin degradation in soil. Weed Sci., 37 (1989) 604–8.

    CAS  Google Scholar 

  47. Duffy, M. J., Hanafey, M. K., Linn, D. M., Russell, M. H. & Peter, C. J., Predicting sulfonylurea herbicide behaviour under field conditions. Proc. Brit. Crop Prot. Conf.—Weeds, 2 (1987) 541–8.

    Google Scholar 

  48. Graham-Bryce, I. J., Environmental impact—putting pesticides into perspective. Proc. Brit. Crop Prot. Conf.—Weeds, 1 (1989) 3–20.

    Google Scholar 

  49. Roberts, T. R. & Standen, M. E., Further studies of the degradation of the pyrethroid insecticide cypermethrin in soils. Pestic. Sci., 12 (1981) 285–96.

    Article  CAS  Google Scholar 

  50. Taylor, A. W. & Glotfelty, D. E., Evaporation from soils and crops. In Environmental Chemistry of Herbicides, Vol. 1, ed. R. Grover. CRC Press, Boca Raton, 1988, pp. 89–129.

    Google Scholar 

  51. Glotfelty, D. E. & Schomburg, C. J., Volatilisation of pesticides from soil. In Reactions and Movement of Organic Chemicals in Soils, ed. B. L. Sawhney & K. Brown. Soil Science Society of America, Madison, 1989, pp. 181–207.

    Google Scholar 

  52. Spencer, W. F., Cliath, M. M. & Farmer, W. J., Vapor density of soil-applied dieldrin as related to soil-water content, temperature, and dieldrin concentration. Soil Sci. Soc. Amer. Proc, 33 (1969) 509–11.

    Article  CAS  Google Scholar 

  53. Mayer, R., Letey, J. & Farmer, W. J., Models for predicting volatilisation of soil incorporated pesticides. Soil Sci. Soc. Amer. Proc, 38 (1974) 563–8.

    Article  Google Scholar 

  54. Taylor, A. W., Glotfelty, D. E., Glass, B. L., Freeman, H. P. & Edwards, W. M., Volatilisation of dieldrin and heptachlor from a maize field. J. Agric Food Chem., 24 (1976) 625–31.

    Article  CAS  Google Scholar 

  55. Briggs, G. G. & Lord, K. A., The distribution of aldicarb and its metabolites between Lumbricus terrestris, water and soil. Pestic. Sci., 14 (1983) 412–16.

    Article  CAS  Google Scholar 

  56. Lord, K. A., Briggs, G. G., Neale, M. C. & Manlove, R., Uptake of pesticides from water and soil by earthworms. Pestic. Sci., 11 (1980) 401–8.

    Article  CAS  Google Scholar 

  57. Briggs, G. G., Bromilow, R. H. & Evans, A. A., Relationships between lipophilicity, root uptake and translocation of non-ionised chemicals by barley. Pestic. Sci., 13 (1982) 495–504.

    Article  CAS  Google Scholar 

  58. Shone, M. G. T. & Wood, A. V., A comparison of the uptake and translocation of some organic herbicides and a systemic fungicide by barley - 1 Adsorption in relation to physico-chemical properties. J. Exp. Bot., 25 (1974) 390–400.

    Article  CAS  Google Scholar 

  59. Cooke, D. A., Bromilow, R. H. & Nicholls, P. H., The extent and efficacy of granular pesticide usage to control ectoparasitic nematodes on sugar beet. Crop Protection, 4 (1985) 446–57.

    Article  Google Scholar 

  60. Hallberg, G. R., Pesticide pollution of groundwater in the humid United States. Agric. Ecosyst. Environ., 26 (1989) 299–367.

    Article  CAS  Google Scholar 

  61. Leistra, M. & Boesten, J. J. T. I., Pesticide contamination of groundwater in Western Europe. Agric. Ecosyst. Environ., 26 (1989) 369–89.

    Article  CAS  Google Scholar 

  62. Jones, R. L., Field, laboratory and modeling studies on the degradation and transport of aldicarb residues in soil and groundwater. In Evaluation of Pesticides in Groundwater, ed. W. Y. Garner, R. C. Honeycutt & H. N. Nigg. American Chemical Society, Washington, 1986, pp. 197–218.

    Chapter  Google Scholar 

  63. Gustafson, D. I., Groundwater ubiquity score: a simple method for assessing pesticide leachability. Env. Tox. Chem., 8 (1989) 339–57.

    Article  CAS  Google Scholar 

  64. Jury, W. A., Focht, D. D. & Farmer, W. J., Evaluation of pesticide groundwater pollution potential from standard indices of soil-chemical adsorption and biodegradation. J. Environ. Qual., 16 (1987) 422–8.

    Article  CAS  Google Scholar 

  65. Aller, L., Bennett, T., Lehr, J. H. & Petty, R., DRASTIC: a system to evaluate the pollution potential of hydrogeologic settings by pesticides. In Evaluation of Pesticides in Groundwater, ed. W. Y. Garner, R. C. Honeycutt & H. N. Nigg. American Chemical Society, Washington, 1986, pp. 141–58.

    Chapter  Google Scholar 

  66. Chiou, C. T., Theoretical considerations of the partition uptake of nonionic organic compounds by soil organic matter. In Reactions and Movement of Organic Chemicals in Soils, ed. B. L. Sawhney & K. Brown. Soil Science Society of America, Madison, 1989, pp. 1–29.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Elsevier Science Publishers Ltd

About this chapter

Cite this chapter

Nicholls, P.H. (1991). Organic Contaminants in Soils and Groundwaters. In: Jones, K.C. (eds) Organic Contaminants in the Environment. Environmental Management Series, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4329-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4329-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8424-6

  • Online ISBN: 978-94-009-4329-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics