Skip to main content

Rheology of blood cells

  • Chapter
Clinical Hemorheology

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 74))

Abstract

Blood rheology encompasses the flow properties of blood cell suspensions in plasma throughout the vasculature from small capillaries where cells must pass single file up to large vessels where several thousand cells occupy a cross section of the flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cokelet G.R., Merrill E.W., Gilliland E.R., Sh H., Britten A., Wells R.E. 1963. The rheology of human blood - measurement near and at zero shear rate. Trans. Soc. Rheology 7, 303–317.

    Google Scholar 

  2. Merrill E.W., Benis A.M., Gilliland E.R., Sherwood T.K., Salzman E.W. 1965. Pressure-flow relations of human blood in hollow fibers at low flow rates. J. Appl. Physiol. 20, 954–967.

    Google Scholar 

  3. Goldsmith H.L., Mario J. 1972. Flow behaviour of erythrocytes. I. Rotation and deformation in dilute suspensions. Proc. Roy. Soc. Lond. B. 182, 351–384.

    Google Scholar 

  4. Schmid-Schobein H., Wells R.E., Goldstone J. 1971. Fluid drop-like behaviour of erythrocytes - disturbance in pathology and its quantification. Biorheology 7, 227–234.

    Google Scholar 

  5. Meiselman H.J. 1978. Rheology of shape-transformed human red cells. Biorheology 15, 225–237.

    PubMed  CAS  Google Scholar 

  6. Martin R.R., DeWitz T.S., Mclntire L.V. 1979. Alterations in leukocyte structure and function due to mechanical trauma. In Hwang, Gross and Patel (eds). Quantitatve Cardiovascular Studies: Clinical and Research Applications of Engineering Principles. University Park Press, Baltimore, MD, pp. 419–454.

    Google Scholar 

  7. Evans E.A., Mohandas N., Leung A. 1984. Static and dynamic rigidities of normal and sickle erythrocytes: Major influence of cell hemoglobin concentration. J. Clin. Invest. 73, 477–488.

    Google Scholar 

  8. Bell D.N., Goldsmith H.L. 1984. Platelet aggregation in poiseuille flow II. Effect of shear rate. Microvasc. Res. 27, 316–330.

    Google Scholar 

  9. Hartert H. 1984. Biorheology in the practice of medicine: resonance thrombography. Biorheology 21, 19–32.

    PubMed  CAS  Google Scholar 

  10. Jen C.J., Mclntire L.V. 1982. The structural properties and contractile force of a clot. Cell Motility 2, 445–455.

    Article  PubMed  CAS  Google Scholar 

  11. Schmid-Schöbein G.W., Shih Y., Chien S. 1980. Morphometry of human leukocytes. Blood 56, 866–875.

    Google Scholar 

  12. Frojmovic M.M., Milton J.G. 1982. Human platelet size, shape, and related functions in health and disease. Physiol. Rev. 62, 185–257.

    Google Scholar 

  13. Evans E.A., Hochmuth R.M. 1976. Membrane viscoelastity. Biophys. J. 16, 1–11.

    Google Scholar 

  14. Evans E.A., Skalak R. 1980. Mechanics and Thermodynamics of Biomembranes. CRC Press, Boca Raton, FL.

    Google Scholar 

  15. Evans E.A., Waugh R. 1978. Osmotic correction to elastic area compressibility: measurements on red cell membrane. Biophys. J. 20, 307-313.

    Google Scholar 

  16. Evans E.A. 1973. New membrane concept applied to the analysis of fluid-shear and micropipette deformed red blood cells. Biophys. J. 13, 941–954.

    Article  PubMed  CAS  Google Scholar 

  17. Evans E.A., Lacelle P.L. 1975. Intrinsic material properties of the erythrocyte membrane indicated by mechanical analysis of the deformation. Blood 45, 29–43.

    PubMed  CAS  Google Scholar 

  18. Chien S., Sung K.L.P., Skalak R., Usami S., Tözeren A. 1978. Theoretical and experimental studies on viscoelastic properties of red cell membranes. Biophys. J. 24, 463–488.

    Google Scholar 

  19. Waugh R., Evans E.A. 1979. Thermoelasticity of red blood cell membrane. Biophys. J. 26, 115–132.

    Google Scholar 

  20. Evans E.A. 1980. Minimum energy analysis of membrane deformation applied to pipet aspiration and surface adhesion of red blood cells. Biophys. J. 30, 265–284.

    Article  PubMed  CAS  Google Scholar 

  21. Evans E.A. 1982. Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests. Biophys. J. 43, 27–30.

    Article  Google Scholar 

  22. Hochmuth R.M., Worthy P.R., Evans E.A. 1979. Red cell extensional recovery and the determination of membrane viscosity. Biophys. J. 26, 101–114.

    Google Scholar 

  23. Stossel T.P., Hartwig J.H., Yin H.L., Stendahl O. 1980. The motor of amoeboid leukocytes. Biochem. Soc. Symp. 45, 51–63.

    Google Scholar 

  24. Valerius N.H., Stendahl O., Hartwig J.H., Stossel T.P. 1981. Distribution of actin-binding protein and myosin in polymorphonuclear leukocytes during locomotion and phagocytosis. Cell 24, 195–202.

    Article  PubMed  CAS  Google Scholar 

  25. Bagge U., Skalak R., Attefors R. 1977. Granulocyte rheology: Experimental studies in an in vitro micro-flow system. Adv. Microcirc. 7, 19–48.

    Google Scholar 

  26. Schmid-Schonbein G.W., Sung K.L.P., Tozeren H., Skalak R., Chien S. 1981. Passive mechanical properties of human leukocytes. Biophys. J. 36, 243–256.

    Google Scholar 

  27. Evans E.A., Kukan B. 1984. Passive material behavior of granulocytes based on large deformation and recovery after deformation tests. Blood 64, 1028–1035.

    PubMed  CAS  Google Scholar 

  28. Miller M.E., Myers K.A. 1975. Cellular deformability of the human peripheral blood polymorphonuclear leukocyte: Method of study, normal variation and effects of physical and chemical alterations. Res. J. Reticuloendothel. Soc. 18, 337–345.

    Google Scholar 

  29. Evans E.A., Kukan B. Viscous resistance to extension and flow of blood granulocytes: Dominated by the cell cortex. Blood (to be submitted).

    Google Scholar 

  30. Schmid-Schönbein G.W., Usami S., Skalak R., Chien S. 1980. The interaction of leukocytes and erythrocytes in capillary and post-capillary vessels. Microvasc. Res. 19, 45–70.

    Google Scholar 

  31. Chien S., Schmid-Schönbein G.W., Sung K.L.P., Schmalzer E.A., Skalak R. 1984. Viscoelastic properties of leukocytes. In White Cell Mechanics Basic Science and Clinical Aspects. H.J. Meiselman, M.A. Lichtman and P.L. LaCelle (eds.), Alan R. Liss, New York. Kroc Found. Ser. 16, pp 19–51

    Google Scholar 

  32. Schmid-Sehönbein G.W., Skalak R., Sung K.L.P., Chien S. 1982. Human leukocytes in the active state. In White Blood Cells, Morphology and Rheology as Related to Function. U. Bagge, G.V. Born and P. Gaehtgens. (eds.) Martinus Nijhoff, The Hague, pp. 21–31.

    Google Scholar 

  33. Fischer T., Schmid-Schönbein H. 1977. Tank tread motion of red cell membranes in viscometric flow: Behavior of intracellular and extracellular markers. Blood Cells 3, 351.

    Google Scholar 

  34. Fischer T.M., Stohr M., Schmid-Schönbein H. 1978. Red blood cell (RBC) microrheology: Comparison of the behavior of single RBC and liquid droplets in shear flow. AIChE Symp. Ser. No. 182, 74, 38–45.

    Google Scholar 

  35. Keller S.R., Skalak R. 1982. Motion of a tank-treading ellipsoidal particle in a shear flow. J. Fluid. Mech. 120, 24–27.

    Google Scholar 

  36. Tran-Son-Tay R., Sutera S.P., Rao P.R. 1984. Determination of red blood cell membrane viscosity from rheoscopic observations of tank-treading motion. Biophys. J. 46, 65–72.

    Google Scholar 

  37. Nobis U., Fries A.R., Gaehtgens P. 1982. Rheological mechanisms contributing to WBC-margination. In Bagge U., Born G.V.R. and Gaehtgens P. (eds). White Blood Cells: Morphology and Rheology as Related to Function. Martinus Nijhoff, The Hague, pp. 57–65.

    Google Scholar 

  38. Brooks D.E. 1973. The effect of neutral polymers on the electrokinetic potential of cells and other charged particles. III. Experimental studies on the dextran-erythrocyte system. J. Colloid Interface Sci. 43, 700–713.

    Article  CAS  Google Scholar 

  39. Jan P. K.M., Chien S. 1973. Role of surface electric charge in red blood cell interactions. J. Gen. Physiol. 61, 638–654.

    Google Scholar 

  40. Brooks D.E., Greig R.G., Janzen H. 1980. Mechanisms of erythrocyte aggregation. In Cokelet G.C., Meiselman H.J., Brooks D.E. (eds). Erythrocyte Mechanics and Blood Flow. Alan R. Liss, Inc. New York. pp. 119–140.

    Google Scholar 

  41. Evans E.A., Parsegian V.A. 1983. Energetics of membrane deformation and adhesion in cell and vesicle aggregation. In Copley A.L., Seaman G.V.F. (eds). Surface Phenomena in Hemorheology: Their Theoretical, Experimental and Clinical Aspects. Ann. N. Y. Acad. Sci. 416, 13–33.

    Google Scholar 

  42. Fahraeus R. 1929. The suspension stability of blood. Physiol. Rev. 9, 241–274.

    Google Scholar 

  43. Chien S., Usami S., Skalak R. 1984. Blood flow in small tubes. In Handbook of Physiology, Circulation. Section on Microrculation, E.M. Renk and C. Michel, (eds), Am. Physiol. Soc., Bethesda, MD. pp. 217–249.

    Google Scholar 

  44. Goldsmith H.L., Skalak R. 1975. Hemodynamics. Ann. Rev. Fluid. Mech. 7, 213–247.

    Google Scholar 

  45. Greig R.G., Brooks D.E. 1979. Shear-induced concanavalin A agglutination of human erythrocytes. Nature 282, 738–739.

    Article  PubMed  CAS  Google Scholar 

  46. Brooks D.E., Trust T.J. 1983. Enhancement of bacterial adhesion by shear forces: Characterization of the hemagglutination induced by Aeromonas salmonicida strain 438. J. Gen. Microbiol. 129, 3661–3669.

    Google Scholar 

  47. Brooks D.E. 1976. Red cell interactions in low flow states. In Grayson J., Zingg W. (eds). Microrculation I. Blood-Vessel Interactions, Systems in Special Tissues. Plenum Press, N.Y. pp. 33–52.

    Google Scholar 

  48. Goldsmith H.L., Gold P., Shuster J., Takamura K. 1982. Interactions between sphered human red cells in tube flow: technique for measuring the strength of antigen-antibody bonds. Mierovasc. Res. 23, 231–238.

    Google Scholar 

  49. Karino T., Goldsmith H.L. 1979. Aggregation of human platelets in an annular vortex distal to a tubular expansion. Microvasc. Res. 17, 217–237.

    Google Scholar 

  50. Goldsmith H.L., Spain S. 1984. Margination of leukocytes in blood flow through small tubes. Microvasc. Res. 27, 204–222.

    Google Scholar 

  51. Evans E.A., Metcalfe M. 1984. Free energy potential for aggregation of mixed phosphatidylcho- line/phosphatidylserine lipid vesicles in glucose polymer (dextran) solutions. Biophys. J. 45, 715–720.

    Google Scholar 

  52. Chien S., Sung L.A., Simchon S., Lee M.M.L., Jan, P.K.M. and Skalak R. 1984. Energy balance in red cell interactions. Ann. N.Y. Acad. Sci. 416, 190–206.

    Google Scholar 

  53. Buxbaum K., Evans E.A., Brooks D.E. 1982. Quantitation of surface affinities of red blood cells in dextran solutions and plasma. Biochem. 21, 3235–3239.

    Article  CAS  Google Scholar 

  54. Janzen J., Evans E.A., Brooks D.E. Fibrinogen adsorption and red cell-red cell adhesion energy. (In preparation).

    Google Scholar 

  55. Skalak R., Zarda P.R., Jan K.M., Chien S. 1981. Mechanics of rouleaux formation. Biophys. J. 35, 771–782.

    Google Scholar 

  56. Evans E.A., Buxbaum K. 1981. Affinity of red blood cell membrane for particle surfaces measured by the extent of particle encapsulation. Biophys. J. 34, 121–312.

    Google Scholar 

  57. Evans E.A. 1985. Detailed mechanics of membrane-membrane adhesion and separation I. Continuum of molecular cross-bridges. Biophys. J. 48, 175–183.

    Article  PubMed  CAS  Google Scholar 

  58. Evans E.A. 1985. Detailed mechanics of membrane-membrane adhesion and separation II. Discreet, kinetically trapped molecular cross-bridges. Biophys. J. 48, 185–192.

    Article  PubMed  CAS  Google Scholar 

  59. Evans E.A., Leung A. 1984. Adhesivity and rigidity of red blood cell in relation to wheat germ agglutinin binding. J. Cell Biol. 98, 1201–1208.

    Article  PubMed  CAS  Google Scholar 

  60. Karino T., Goldsmith H.L. 1984. Role of blood cell-wall interactions in thrombogenesis and atherogenesis: A microrheological study. Biorheology 21, 587–601.

    Google Scholar 

  61. Karino T., Goldsmith H.L. 1979. Adhesion of human platelets to collagen on the walls distal to a tubular expansion. Microvasc. Res. 17, 238–262.

    Google Scholar 

  62. Mustard J.F., Packham M.A., Kinlough-Rathbone R.L. 1981. Mechanisms in thrombosis. In Blood A.L., Thomas D.P. (eds.). Hemostasis and Thrombosis. Churchill Livingstone, Edinburgh, pp. 503–526.

    Google Scholar 

  63. Williams T.J., Jose P.J., Forest M.J., Wedmore C.V., Clough G.F. 1984. Interactions between neutrophils and microvascular endothelial cells leading to cell emigration and plasma protein leakage. In Meiselman H.J., Lichtman M.A., Lacelle P.L. (eds). White Cell Mechanics: Basic Science and Clinical Aspects. Alan R. Liss, Inc., New York. KROC Found. Ser. 16, pp. 195–208.

    Google Scholar 

  64. Mohandas N., Evans E.A. 1984. Adherence of sickle erythrocytes to vascular endothelial cells: Requirement for both cell membrane changes and plasma factors. Blood 64, 282–287.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Brooks, D.E., Evans, E.A. (1987). Rheology of blood cells. In: Chien, S., Dormandy, J., Ernst, E., Matrai, A. (eds) Clinical Hemorheology. Developments in Cardiovascular Medicine, vol 74. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4285-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4285-1_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8404-8

  • Online ISBN: 978-94-009-4285-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics