Skip to main content

Methodology for Predicting the Performance of Different Pet Camera Designs

  • Chapter
Information Processing in Medical Imaging

Abstract

The evaluation of the performance of a given positron camera design is an extremely complex problem; since so many physical (photon scattering, detector parallax…), and algorithmic (deconvolution filter, image post-processing) factors interfere to produce the final image to be used for medical diagnosis. The assessment of the quality of a given final image is also far from trivial, this problem being influenced by physical, physiological and psychological factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lupton L.R. and Keller N.A.: A general purpose Monte-Carlo simulation for the design of single-slice PET ring cameras. Chalk River Nuclear Laboratories, Report AECL-7680 (1982)

    Google Scholar 

  2. Perez-Mendez V. et al.: The imaging performance of a MWPC positron camera. Proc. 1st International Symposium ISMIII 99–106 (1982)

    Google Scholar 

  3. Rose A.: Vision,Human and Electronic. Plenum Press 1974

    Google Scholar 

  4. Shosa D. and Kaufman L.: Methods for evaluation of diagnostic imaging instrumentation. Phys. Med. Biol. 26, 101–112 (1981)

    Article  PubMed  CAS  Google Scholar 

  5. Beck R.N. et al.: The theoretical advantages of eliminating scatter in imaging systems. In: Semiconductor Detectors in the future of Nuclear Medicine. P.B.Hoffer et al.editors, Society of Nuclear Medicine Inc. 1971

    Google Scholar 

  6. Phelps M.E. et al.: Design consideration in Positron Emission Tomography. IEEE Trans. Nucl. Sc. 26, 2746–51 (1979)

    Article  Google Scholar 

  7. Tanaka E. et al.: Analytical study of the performance of a multilayer PCT scanner. Jour. Comp. Ass. Tomo. 6, 350–364 (1982)

    Article  CAS  Google Scholar 

  8. Perez-Mendez V. et al.: Further improvements in the design of a positron camera with dense drift space MWPC’s. Nucl. Instr. Meth. 217, 89–91 (1983)

    Article  CAS  Google Scholar 

  9. Smith W.E., Barrett H.H., Paxman R.G.: Reconstruction of objects from coded images by simulated annealing. Optics Letters 8, p. 199 (1983)

    Article  PubMed  CAS  Google Scholar 

  10. Floyd C. et al.: Inverse Monte Carlo: a unified reconstruction algorithm for SPECT. IEEE Trans. Nucl. Sc. 32, 779–785 (1985)

    Article  Google Scholar 

  11. Del Guerra A. et al.: Design consideration for a high spatial resolution PET with MWPC. IEEE Trans. Nucl. Sc. 30, 646 (1983)

    Article  Google Scholar 

  12. Logan J. and Bernstein H.J.: A Monte-Carlo simulation of Compton Scattering in PET. Journ. Comp. Ass. Tomo. 7, 316–320 (1983)

    Article  CAS  Google Scholar 

  13. Townsend D.W. and Jeavons A.P.: private communication 1984

    Google Scholar 

  14. Chan and Doi: The validity of Monte-Carlo simulation in studies of scattered radiation in diagnostic radiology. Phys. Med. Biol. 28, 109–129 (1983)

    Article  PubMed  CAS  Google Scholar 

  15. Guang Y.X. and Rogers J.G.: A Monte-Carlo calculation of detector design for PET. Nucl.Instr. Meth. A234, 382–387 (1985)

    Article  Google Scholar 

  16. Bradshaw J. et al.: Application of Monte-Carlo methods to the design of SPECT detector systems. IEEE Trans. Nucl. Sc. 32, 753–757 (1985)

    Article  Google Scholar 

  17. Lupton L.R. and Keller N.A.: Performance study of a single slice PET using Monte-Carlo techniques. IEEE Trans. Med. Imag. 2, 154–168 (1983)

    Article  CAS  Google Scholar 

  18. Derenzo S.E.: Precision measurement of annihilation point spread function for medically important positron emitters. Proc. 5th Int. Conf. on positron annihilation, Lake Yamanaka, Japan April 1979 p. 819–823

    Google Scholar 

  19. Perez-Mendez V. et al.: The HISPET design. Submitted to Computerized Radiology (1984)

    Google Scholar 

  20. Jeavons A. et al.: The High Density Avalanche Chamber for PET. IEEE Trans. Nucl. Sc. 30, p. 640 (1983)

    Article  Google Scholar 

  21. Webb S. et al.: Tumour localization in oncology using positron emitter radiopharmaceuticals and a MWPC positron camera. Nucl. Instr. Meth. 221, 233–241 (1984)

    Article  Google Scholar 

  22. SHammersley J.M. and Handscomb D.C.: Monte-Carlo methods. Methuen, London 1964

    Google Scholar 

  23. Flugge S.: Handbook der Physik, vol. XLV Nuclear Instrumentation II. Springer-Verlag 1958

    Google Scholar 

  24. Sorenson J. A. and Phelps M.E.: Physics in Nuclear Medicine. Grune and Stratton,Inc, New York 1980

    Google Scholar 

  25. Holmes T.J.: Predicting count loss in modern PET systems. IEEE Trans. Nucl. Sc. 30, 723–728 (1983)

    Article  Google Scholar 

  26. King S.E. and Lim C.B.: Pulse-pile up,dead time, derandomization and count rate in scintillation gamma cameras. IEEE Trans. Nucl. Sc. 32, 807–810

    Google Scholar 

  27. Derenzo S.: Methods for optimizing side shielding in positron-emission tomographs and for comparing detector materials. J. Nucl. Med. 21, 971–977 (1980)

    PubMed  CAS  Google Scholar 

  28. Lim C.H. et al.: Image noise, resolution and lesion detectability in SPECT. IEEE Trans. Nucl. Sc. 29, 500–505 (1982)

    Article  Google Scholar 

  29. Budinger T.F., Derenzo S.E., Gullberg G.T., Greenberg W.L., Huesman R.H.: J. Comp. Assist. Tomogr. 1, 131 (1977)

    Article  CAS  Google Scholar 

  30. Natterer F.: Numer. Math., 30, p 81–91 (1978)

    Article  Google Scholar 

  31. Defrise M. and De Mol C.: Resolution limits for full- and limited-angle tomography. Proc. 8th IPMI conference, Brussels 1983, F. Deconinck ed., Martinus Nijhoff 1984, 94–105.

    Google Scholar 

  32. Colsher J.G.: Fully three-dimensional positron emission tomography. Phys. Med. Biol. 25, 103–115 (1980)

    Article  PubMed  CAS  Google Scholar 

  33. Bertero M. et al.: in Inverse scattering problems in optics (H.P.Baltes ed.), Topics in Current Physics, vol 20, Springer Verlag 1980, 161–214

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Defrise, M., Deconinck, F., Kuijk, S., Bossuyt, A., Lacroix, V., Waligorski, M. (1986). Methodology for Predicting the Performance of Different Pet Camera Designs. In: Bacharach, S.L. (eds) Information Processing in Medical Imaging. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4261-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4261-5_32

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8392-8

  • Online ISBN: 978-94-009-4261-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics