Skip to main content

Image Reconstruction in Time-of-Flight Positron Emission Tomography

  • Chapter
Book cover Information Processing in Medical Imaging
  • 97 Accesses

Abstract

Five algorithms for image reconstruction in time-of-flight assisted positron emission tomography (TOFPET) have been studied. These algorithms include three approaches previously described in the literature and two new methods recently developed in our institute. Computer simulation studies have been performed to evaluate the relative merits of these various techniques. Performance indices such as computational efficiency, reconstructed image resolution, and signal-to-noise ratio (SNR) have been investigated. Results from the analysis suggest that the two new methods may offer some potential advantages over other algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Campagnolo, R.E., Garderet, P. and Vacher, J.: Tomographic par emmetteurs positrons aves mesure de temps de vol. In: Proc. of the Communication au Colloque international sur le traitement du signal. Nice, May 1979.

    Google Scholar 

  2. Allemand, R., Gresset, C. and Vacher, J.: Potential advantages of a cesium fluoride scintillator for a time-of-flight positron camera. J. Nucl. Med. 21: 153–155, 1980.

    PubMed  CAS  Google Scholar 

  3. Mullani, N.A., Markham, J. and Ter-Pogossian, M.M.: Feasibility of time-of-flight reconstruction in positron emission tomography. J. Nucl. Med. 21: 1095–1097, 1980.

    PubMed  CAS  Google Scholar 

  4. Ter-Pogossian, M.M., Mullani, N.A., Ficke, D.C., Markham, J. and Snyder, D.L.: Photon time-of-flight-assisted positron emission tomography. J. Comput. Assist. Tomogr. 5: 227–239, 1981.

    Article  PubMed  CAS  Google Scholar 

  5. Budinger, T.F.: Instrumentation trends in nuclear medicine. Semin. Nucl. Med. 7: 285–297, 1977.

    Article  PubMed  CAS  Google Scholar 

  6. Snyder, D.L., Thomas, L.J. and Ter-Pogossian, M.M.: A mathematical model for positron emission tomography having time-of-flight measurement. IEEE Trans. Nucl. Sci. NS-28: 3575–3583, 1981.

    Article  Google Scholar 

  7. Tomitani, T. : Image reconstruction and noise evaluation in photon time-of-flight assisted positron emission tomography. IEEE Trans. Nucl. Sci. NS-28: 4582–4589, 1981.

    Google Scholar 

  8. Snyder, D.L. : Some noise comparison of data collection arrays for emission tomography systems having time-of-flight measurements. IEEE Trans. Nucl. Sci. NS-29: 1029–1033, 1982.

    Article  Google Scholar 

  9. Wong, W.H., Mullani, N.A. and Gould, K.L.: Image improvement and design optimization in the time-of-flight PET. J. Nucl. Med. 24: 52–60, 1983.

    PubMed  CAS  Google Scholar 

  10. Mullani, N.A., Wong, W.H., Hartz, R., Philippe, E.A. and Yerian, K.: Sensitivity improvement of TOFPET by the utilization of the inter-slice coincidences. IEEE Trans. Nucl. Sci. NS-29: 479–483, 1982.

    Google Scholar 

  11. Yamamoto, M., Ficke, D.C. and Ter-Pogossian, M.M.: Effect of the software coincidence timing window in time-of-flight assisted positron emission tomography. IEEE Trans. Nucl. Sci. NS-30: 711–714, 1983.

    Google Scholar 

  12. Bendriem, B., Soussaline, F., Campagnolo, R., Verrey, B., Wainberg, P. and Syrota, A.: Contrast improvement by reduction of the scatter contribution in a PET system using TOF information. J. Nucl. Med. 26: P36, 1985. (Abstract)

    Google Scholar 

  13. Ter-Pogossian, M.M., Ficke, D.C., Yamamoto, M. and Hood, J.T.: Design characteristics and preliminary testing of SUPER PETT I, a positron emission tomograph utilizing photon time-of-flight information (TOFPET). In: Proc. of Workshop on Time-of-Flight Tomography, St. Louis, May 1982, IEEE Computer Society Press, Silver Spring, Maryland, 1982, pp. 37–41.

    Google Scholar 

  14. Mullani, N.A., Wong, W.H., Hartz, R.K., Yerian, K., Philippe, E.A., Gaeta, J.M. and Gould, K.L.: Preliminary result with TOFPET. IEEE Trans. Nucl. Sci. NS-30: 739–743, 1983.

    Article  Google Scholar 

  15. Snyder, D.L. and Politte, D.G.: Image reconstruction from list-mode data in an emission tomography system having time-of-flight measurements. IEEE Trans. Nucl. Sci. NS-30: 1843–1849, 1983

    Article  CAS  Google Scholar 

  16. Metz, C.E.: A mathematical investigation of radioisotope scan image processing. Ph.D. Dissertation, University of Pennsylvania, Philadelphia, Pennsylvania, 1969. Ann Arbor, Michigan, University Microfilms (order no. 70–16, 186 ).

    Google Scholar 

  17. Metz, C.E. and Pizer, S.M.: Nonstationary and nonlinear scintigram processing. Presented at the Second International Conference on Data Handling and Image Processing in Scintigraphy, Hanover, Germany, October, 1971. ( Unpublished manuscript )

    Google Scholar 

  18. Pizer, S.M., Correia, J.A., Chesler, D.A. and Metz, C.E.: Results of nonlinear and nonstationary processing. In: Proc. of the Third International Conference on Data Handling and Image Processing in Scintigraphy, Cambridge, Massachusetts, June 6–9, 1973, pp. 93–101.

    Google Scholar 

  19. Pizer, S.M. and Todd-Pokropek, A.E.: Improvement of scintigrams by computer processing. Semin. Nucl. Med. 8: 125–146, 1978.

    Article  PubMed  CAS  Google Scholar 

  20. King, M.A., Doherty, P.W., Schwinger, R.B., Jacobs, D.A., Kidder, R.E. and Miller, T.R.: Fast count-dependent digital filtering of nuclear medicine images. J. Nucl. Med. 24: 1039–1045, 1983.

    PubMed  CAS  Google Scholar 

  21. King, M.A., Schwinger, R.B., Penney, B.C. and Doherty, P.W.: Two-dimensional filtering of SPECT images using the Metz and Wiener filters. J. Nucl. Med. 25: P14, 1984. (Abstract)

    Google Scholar 

  22. Chan, H.-P., Doi, K. and Metz, C.E.: Digital image processing: Effects of Metz filters and matched filters on detection of simple radiographic objects. Proc. SPIE 454: 420–432, 1984.

    Google Scholar 

  23. Chen, C.-T. and Metz, C.E.: A new image reconstruction method for positron emission tomography with time-of-flight information (TOFPET). Med. Phys. 10: 731, 1983. (Abstract)

    Google Scholar 

  24. Chen, C.-T. and Metz, C.E.: Evaluation and comparison of image reconstruction algorithms for positron emission tomography with time-of-flight information (TOFPET). Presented at the 2nd International Symposium on Medical Images and Icons, July 1984. In.: Proceedings of ISMII 1984, pp. 388–393.

    Google Scholar 

  25. Dempster, A.P., Laird, N.M. and Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. JRSS 39: 1–38, 1977.

    Google Scholar 

  26. Shepp, L.A. and Vardi, Y.: Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imaging MI-1: 113–122, 1982.

    Article  Google Scholar 

  27. Lange, K. and Carson, R.: EM reconstruction algorithms for emission and transmission tomography. J. Comput. Assist. Tomogr. 8: 306–312, 1984.

    PubMed  CAS  Google Scholar 

  28. Shepp, L.A., Vardi, Y., Ra, J.B., Hilal, S.K. and Cho, Z.H.: Maximum likelihood PET with real data. IEEE Trans. Nucl. Sci. NS-31: 910–913, 1984.

    Article  Google Scholar 

  29. Vardi, Y., Shepp, L.A. and Kaufman, L.: A statistical model for positron emission tomography. J. Amer. Statist. Assoc. 80: 8–37, 1985.

    Article  Google Scholar 

  30. Miller, M.I., Snyder, D.L. and Miller, T.R.: Maximum likelihood reconstruction for single-photon emission computed-tomography. IEEE Trans. Nucl. Sci. NS-32: 769–778, 1985.

    Article  Google Scholar 

  31. Chen, C.-T. and Metz, C.E.: A simplified EM reconstruction algorithm for TOFPET. IEEE Trans. Nucl. Sci. NS-32: 885–888, 1985.

    Article  Google Scholar 

  32. Carson, R.E.: Two image-wide parameter estimation methods for positron emission tomography: Theory and application to the measurement of local cerebral blood flow in humans. Ph.D. Dissertation, University of California at Los Angeles, 1983.

    Google Scholar 

  33. Snyder, D.L. : Parameter estimation for dynamic studies in emission tomography systems having list-mode data. IEEE Trans. Nucl. Sci. NS-31: 925–931, 1984.

    Article  Google Scholar 

  34. Richardson, W.H.: Bayesian-based iterative method of image restoration. J. Opt. Soc. Am. 62: 55–59, 1972.

    Article  Google Scholar 

  35. Raeside, D.E. : Bayesian statistics: a guided tour. Med. Phys. 3: 1–11, 1976.

    Article  PubMed  CAS  Google Scholar 

  36. Knoop, B., Jordan, K.,.Judas, R. and Schober, D.: Spatial resolution in imaging systems: equivalent width, a realistic measure to replace FWHM. J. Nucl. Med.,25: P22, 1984. (Abstract)

    Google Scholar 

  37. Wagner, R.F. : Decision theory and the detail signal-to-noise ratio of Otto Shade. Photog. Sci. and Engr. 22:41–46, 1978.

    Google Scholar 

  38. Loo, L.-N., Doi, K. and Metz, C.E.: A comparison of physical image quality indices and observer performance in the radiographic detection of nylon beads. Phys. Med. Biol.,29: 837–856, 1984.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Chen, C.T., Metz, C.E. (1996). Image Reconstruction in Time-of-Flight Positron Emission Tomography. In: Bacharach, S.L. (eds) Information Processing in Medical Imaging. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4261-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4261-5_28

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8392-8

  • Online ISBN: 978-94-009-4261-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics