Skip to main content

Asynchrony in regional filling dynamics as a consequence of uncoordinated segmental contraction during coronary transluminal occlusion

  • Chapter
Quantitative Coronary and Left Ventricular Cineangiography

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 51))

  • 28 Accesses

Summary

The effects of brief periods of a major coronary artery occlusion on the global and regional peak filling rates were studied during angioplasty in 14 patients. None had had a previous myocardial infarction. High-fidelity left ventricular pressure and volume (by angiography) were obtained before, 20 and 50 seconds after the onset of transluminal coronary occlusion and shortly after the last balloon inflation. Segmental wall motion was analyzed frame-by-frame along 20 hemiaxes. Global peak filling rate decreased significantly both after 20 (−25%; p<.05) and 50 seconds (−24%; p<.05) from the onset of the occlusion. The term ∑Δt1 was defined as the sum of the absolute values of the time differences from the occurrence of global peak filling rate and the segmental peak filling rate, in 20 segments. This parameter increased significantly during both periods of transluminal occlusion (by 64%; p<.005 and by 54%; p<.005, respectively) thus indicating an asynchrony in the occurrence of regional peak filling rate. Simultaneously, the sum of time intervals between the aortic valve closure (end systole) and the occurrence of peak segmental shortening, ∑Δt2,− measured in the 20 segments, increased to a similar extent, thus demonstrating an asynchrony in segmental contraction. A significant, negative correlation was found between the global peak filling rate and both ∑Δt1 and ∑Δt2 (r = −. 68; p<.0001 and r = −.73; p<.0001, respectively). Our findings suggest that during coronary transluminal occlusion an early asynchrony in regional peak filling rate occurs which is strictly related to a delayed and asynchronous peak segmental shortening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bonow RO, Bacharach SL, Green MV, Kent KM, Rosing DR, Lipson LC, Leon MB, Epstein SE: Impaired left ventricular diastolic filling in patients with coronary artery disease: assessment with radionuclide angiography. Circulation 64: 315–323, 1981.

    Article  PubMed  CAS  Google Scholar 

  2. Bonow RO, Leon MB, Rosing DR, Kent KM, Lipson LC, Bacharach SL, Green MV, Epstein SE: Effects of Verapamil and Propranolol on left ventricular systolic function and diastolic filling in patients with coronary artery disease: radionuclide angiographic studies at rest and during exercise. Circulation 65: 1337–1350, 1981.

    Article  Google Scholar 

  3. Polak JF, Kemper AJ, Bianco JA, Parisi AF, Tow DE: Resting early peak diastolic filling rate: a sensitive index of myocardial dysfunction in patients with coronary artery disease. J Nucl Med 23: 471–478, 1982.

    PubMed  CAS  Google Scholar 

  4. Mancini GBJ, Slutsky RA, Norris SL, Bhargava V, Ashburn WL, Higgins CB: Radionuclide analysis of peak filling rate, filling fraction, and time to peak filling rate: response to supine bycicle exercise in normal subjects and patients with coronary disease. Am J Cardiol 51: 43–51, 1983.

    Article  PubMed  CAS  Google Scholar 

  5. Yamagishi T, Ozaki M, Kumada T, Ikezono T, Shimizu T, Furutani Y, Yamaoka H, Ogawa H, Matsuzaki M, Matsuda Y, Arima A, Kusukawa R: Asynchronous left ventricular diastolic filling in patients with isolated disease of the left anterior descending coronary artery: assessment with radionuclide ventriculography. Circulation 69: 933–942, 1984.

    Article  PubMed  CAS  Google Scholar 

  6. Bonow RO, Vitale DF, Bacharach SL, Frederick TM, Kent KM, Green MV: Asynchronous left ventricular regional function and impaired global diastolic filling in patients with coronary artery disease: reversal after coronary angioplasty. Circulation 71: 297–307, 1985.

    Article  PubMed  CAS  Google Scholar 

  7. Serruys PW, Wijns W, Brand M van den, Meij S, Slager C, Schuurbiers JCH, Hugenholtz PG, Brower RW: Left ventricular performance, regional blood flow, wall motion, and lactate metabolism during transluminal angioplasty. Circulation 70: 25–36, 1984.

    Article  PubMed  CAS  Google Scholar 

  8. Meester GT, Bernard N, Zeelenberg C, Brower RW, Hugenholtz PG: A computer system for real time analysis of cardiac catheterization data. Cathet Cardiovasc Diagn 1: 113–132, 1975.

    Article  PubMed  CAS  Google Scholar 

  9. Brower RW, Meij S, Serruys PW: A model of asynchronous left ventricular relaxation predicting the bi-exponential pressure decay. Cardiovasc Res 17: 482–488, 1983.

    Article  PubMed  CAS  Google Scholar 

  10. Fioretti P, Brower RW, Meester GT, Serruys PW: Interaction of left ventricular relaxation and filling during early diastole in human subjects. Am J Cardiol 46: 197–203, 1980.

    Article  PubMed  CAS  Google Scholar 

  11. Clayton PD, Bulawa WF, Klausner SC, Urie PM, Marshall HW, Warner HR: The characteristic sequence for the onset of contraction in the normal human left ventricle. Circulation 59: 671–679, 1979.

    PubMed  CAS  Google Scholar 

  12. Klausner SC, Blair TJ, Bulawa WF, Jeppson GM, Jensen RL, Clayton PD: Quantitative analysis of segmental wall motion throughout systole and diastole in the normal human left ventricle. Circulation 65: 580–590, 1982.

    Article  PubMed  CAS  Google Scholar 

  13. Holman BL, Wynne J, Idoine J, Neill J: Disruption in the temporal sequence of regional ventricular contraction. I. Characteristic and incidence in coronary artery disease. Circulation 61: 1075–1083, 1980.

    PubMed  CAS  Google Scholar 

  14. Ferro G, Piscione F, Carella G, Betocchi S, Spinelli L, Chiariello M: Systolic and diastolic time intervals during spontaneous angina. Clin Cardiol 7: 588–592, 1984.

    Article  PubMed  CAS  Google Scholar 

  15. Smalling RW, Kelley KO, Kirkeeide RL, Gould KL: Comparison of early systolic and early diastolic regional function during regional ischemia in a chronically instrumented canine model. J Am Coll Cardiol 2: 263–269, 1983.

    Article  PubMed  CAS  Google Scholar 

  16. Crawford MH, Amon KW, Vance WS, Sorensen SG, Rabinowitz AC: Advantages of the two-dimensional echo over radionuclide angiography for detecting acute changes in LV performance during exercise. Circulation 64 (Supp IV): IV–13 (Abstract), 1981.

    Google Scholar 

  17. Green MV, Jones-Collins BA, Bacharach SL, Findley SL, Patterson RE, Larson SM: Scintigraphic quantification of asynchronous myocardial motion during the left ventricular isovolumic relaxation period: a study in the dog during acute ischemia. J Am Coll Cardiol 4: 72–79, 1984.

    Article  PubMed  CAS  Google Scholar 

  18. Monteferrante JC, Stein JH, Ro JH, Blake JW, McCrossan J, Bontemps RA, Herman MV, Weiss MB: Systolic and diastolic left ventricular function by nuclear probe during transluminal coronary angioplasty. Circulation 70 (Supp II): II–37 (Abstract), 1984.

    Google Scholar 

  19. Brower RW, Meester GT: Computer based methods for quantifying regional left ventricular wall motion from cine ventriculograms. Comp Cardiol: 55–62, 1976.

    Google Scholar 

  20. Brower RW, Meester GT: Quantitative analysis and subjective scoring of regional wall motion: an application for discriminant function classification theory. Comp Cardiol: 3–7, 1982.

    Google Scholar 

  21. Slager CJ, Hooghoudt TEH, Reiber JHC, Schuurbiers JCH, Verdouw PD, Hugenholtz PG: Left ventricular wall motion as derived from endocardially implanted radiographic markers and from contrast angiograms. In: Ventricular wall motion. U Sigwart and PH Heintzen (Eds.). Georg Thieme Verlag, Stuttgart/New York: 150–159, 1984.

    Google Scholar 

  22. Yellin EL, Yoran C, Sonnenblick EH, Frater RWM: The relation between left ventricular relaxation and early diastolic filling in the intact dog heart. Eur Heart J 1 (Suppl B): 179–180, 1980.

    Google Scholar 

  23. Yellin EL, Peskin C, Yoran C, Koeningsberg M, Matsumoto M, Laniado S, McQueen D, Shore D, Frater RWM: Mechanisms of mitral valve motion during diastole. Am J Physiol 214: H389–H400, 1981.

    Google Scholar 

  24. Brutsaert DL, Housmans PR, Goethals MA: Dual control of relaxation. Its role in the ventricular function in the mammalian heart. Circ Res 47: 637–652, 1980.

    PubMed  CAS  Google Scholar 

  25. Brutsaert DL, Rademakers FE, Sys SU: Triple control of relaxation: implications in cardiac disease. Circulation 69: 190–196, 1984.

    Article  PubMed  CAS  Google Scholar 

  26. Jaski BE, Serruys PW: Epicardial wall motion and left ventricular function during transluminal angioplasty in man. J Am Coll Cardiol 6: 695–700, 1985.

    Article  PubMed  CAS  Google Scholar 

  27. Wiegner AW, Allen GJ, Bing OHL: Weak and strong myocardium in series: implications for segmental dysfunction. Am J Physiol 235: H776–H783, 1978.

    PubMed  CAS  Google Scholar 

  28. Pagani M, Vatner SF, Baig H, Braunwald E: Initial myocardial adjustment to brief periods of ischemia and reperfusion in the conscious dog. Circ Res 43: 83–92, 1978.

    PubMed  CAS  Google Scholar 

  29. Kumada T, Karliner JS, Pouleur H, Gallagher KP, Shirato K, Ross J Jr: Effects of coronary occlusion on early ventricular diastolic events in conscious dogs. Am J Physiol 237: H542–H549, 1979.

    PubMed  CAS  Google Scholar 

  30. Forrester JS, Wyatt HL, da Luz PL, Tyberg PV, Diamond GA, Swan HJC: Functional significance of regional ischemic contraction abnormalities. Circulation 54: 64–70, 1976.

    PubMed  CAS  Google Scholar 

  31. Heyndrickx GR, Millard RW, McRitchie RJ, Maroko PR, Vatner SF: Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest 56: 978–985, 1975.

    Article  PubMed  CAS  Google Scholar 

  32. Sasayama S, Nonogi H, Fujita M, Sakurai T, Wakabayashi A, Kawai C, Eiho S, Kuwahara M: Analysis of asynchronous wall motion by regional pressure-length loops in patients with coronary artery disease. J Am Coll Cardiol 4: 259–267, 1984.

    Article  PubMed  CAS  Google Scholar 

  33. Gibson DG, Prewitt TA, Brown DJ: Analysis of left ventricular wall movement during iso-volumic relaxation and its relation to coronary artery disease. Br Heart J 38: 1010–1019, 1976.

    Article  PubMed  CAS  Google Scholar 

  34. Gaasch WH, Blaustein AS, Bing OHL: Asynchronous (segmental early) relaxation of the left ventricle. J Am Coll Cardiol 5: 891–897, 1985.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff Publisher, Dordrecht

About this chapter

Cite this chapter

Reiber, J.H.C., Serruys, P.W., Slager, C.J. (1986). Asynchrony in regional filling dynamics as a consequence of uncoordinated segmental contraction during coronary transluminal occlusion. In: Quantitative Coronary and Left Ventricular Cineangiography. Developments in Cardiovascular Medicine, vol 51. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4239-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4239-4_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8382-9

  • Online ISBN: 978-94-009-4239-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics