Skip to main content

Radionuclide techniques for examination of bone disease

  • Chapter
Book cover Nuclear Techniques in Diagnostic Medicine
  • 87 Accesses

Abstract

The impact on nuclear medicine of the first 99mTc-labeled skeletal imaging agent developed by Subramanian and McAfee [1] in the early seventies has been considerable. This radiopharmaceutical not only established an elegant and sensitive procedure for delineating abnormalities in osseous tissue, but also made possible significant advances in imaging disorders of the heart and of the vascular system in general. In a practical sense the growth in the number of studies of these general types has helped in the past six years to offset the marked decrease in brain scanning with extracellular fluid markers such as pertechnetate — a direct result of advances in competing imaging technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Subramanian G, Mfee JG: A new complex of 99c for skeletal imaging. Radiology 99:192–196, 1971.

    PubMed  CAS  Google Scholar 

  2. Bickel A: Beitrag zur thorium x-behandlung der perniciosen anemie. Berlin Klin Wochenschrift 49:1322–1323, 1912.

    Google Scholar 

  3. Martland HS: Microscopic changes of certain anemias due to radioactivity. Arch Pathol Lab Med 2:465–472, 1926.

    CAS  Google Scholar 

  4. Chiewitz O, Hevesey G: Radioactive indicators in the study of phosphorus metabolism in rats. Nature 136:754–755, 1935.

    Article  CAS  Google Scholar 

  5. Hamilton JG: The use of radioactive tracers in biology and medicine. Radiology 39: 541–572, 1942.

    CAS  Google Scholar 

  6. Merrick MV: Bone scanning. Brit J Radiol 48:327–351, 1975.

    CAS  Google Scholar 

  7. Konigsberg M, Freeman LM: Radionuclide bone imaging. Curr Prob Diag Radiol VI: 3–54, 1976.

    Google Scholar 

  8. Ram PC, Fordham EW: An historical survey of bone scanning. Semin Nucl Med 6: 190–196, 1976.

    Google Scholar 

  9. Bauer GCH, Carlsson A, Lindquist B: Metabolism and homeostatic function of bone. In: Mineral Metabolism, New York, 1961.

    Google Scholar 

  10. Rasmussen H, Bordier P: Cell calcium homeostasis and function. In: The Physiological and Cellular Basis of Metabolie Bone Disease, Baltimore, Williams and Wilkins, p 105–127, 1974.

    Google Scholar 

  11. Jones AG, Francis MD, Davis MA: Bone scanning - radionuclidic reaction mechanisms. Semin Nucl Med 6:3–18, 1976.

    Article  PubMed  CAS  Google Scholar 

  12. Jenkins GN, Venkateswarlu P, Zipkin I: Physiological effects of small doses of fluoride. In: Fluorides and Human Health, Geneva, World Health Organization, p 167–223, 1970.

    Google Scholar 

  13. Blau M, Nagler W, Bender MA: Fluorine 18 - a new isotope for bone scanning. J Nucl Med 3:332–334, 1962.

    PubMed  CAS  Google Scholar 

  14. Blau M, Ganatra R, Bender MA: 18F-fluoride for bone imaging. Semin Nucl Med 2:31–37, 1972.

    Article  PubMed  CAS  Google Scholar 

  15. Subramanian G, Blair RJ, O’Mara RE: 157Dy HEDTA for skeletal imaging. J Nucl Med 12:558–561, 1971.

    PubMed  CAS  Google Scholar 

  16. Chandra R, Hernberg J, Braunstein P, Rosenfeld W: 167Tm: A new bone scanning agent. Radiology 10:687–689, 1972.

    Google Scholar 

  17. Steinberg M, Rasmussen JW, Ennow K, Roy-Poulsen NO, Voetmann V, Poulsen B, Andersen M-L: 167Tm-citrate for bone imaging. In: Radiopharmaceuticals and Labelled Compounds, Vienna, IAEA, Vol 2, p 151–160, 1973.

    Google Scholar 

  18. Francis MD, Gray JA, Griebstein WJ: The formation and influence of surface phases on calcium phosphate solids. Adv Oral Biol 3:83–120, 1968.

    PubMed  CAS  Google Scholar 

  19. Francis MD: Unpublished data.

    Google Scholar 

  20. Dudley HC, Maddox GE: Deposition of radiogallium (72Ga) in skeletal tissues. J Pharmacol Exp Ther 96:224–227, 1949.

    PubMed  CAS  Google Scholar 

  21. Hartman RE, Hayes RL: The binding of gallium by blood serum. J Pharmacol Exp Ther 168:193–198, 1969.

    PubMed  CAS  Google Scholar 

  22. Glimcher MJ, Krane SM: The organization and structure of bone, and the mechanism of calcification. In: A Treatise on Collagen, London, Academic Press, 1968.

    Google Scholar 

  23. Posner AS: The nature of the inorganic phase in calcified tissues. In: Calcification in Biological Systems, Washington DC, American Association for the Advancement of Science, p 373, 1960.

    Google Scholar 

  24. Mean FC, Urist MR: Bone: Fundamentals of the Physiology of Skeletal Tissue, Chicago, University of Chicago Press, p 57, 1968.

    Google Scholar 

  25. Suzuki M: Studies on the physicochemical nature of hard tissue. In: Physico-Chimie et Crystallographie des Apatites d’lntérêt Biologique, Paris, Centre National de la Recherche Scientifique, p 82, 1975.

    Google Scholar 

  26. Bourne GH: The Biochemistry and Physiology of Bone, New York, Academic Press, p 5, 1972.

    Google Scholar 

  27. Brown LE, Chow LC: Chemical properties of bone mineral. Ann Rev Mater Sci 6:213–236, 1976.

    Article  CAS  Google Scholar 

  28. Miller AL, Schroer H: Ultrastructural observations of amorphous bone mineral in avian bone. Calcif Tiss Res 18:311–324, 1975.

    Article  CAS  Google Scholar 

  29. Francis MD, Tofe AJ, Benedict JJ, Bevan JA: Imaging the skeletal system. In: Radiopharmaceuticals II: Proc 2nd Int Symp Radiopharmaceuticals, Seattle, New York, Society of Nuclear Medicine, p 603–614, 1979.

    Google Scholar 

  30. Mougall RI: Skeletal scintigraphy. West J Med 130:503–514, 1979.

    Google Scholar 

  31. Alazraki NP, Davis MA, Jones AG, Marty R, Meil BJ, Siegel BA: The skeletal system. In: Nuclear Medicine Review Syllabus, New York, Society of Nuclear Medicine, p 539–586, 1980.

    Google Scholar 

  32. Subramanian G, Mfee JG, Bell EG, Blair RJ, O’Mara RE, Ralston PH: 99c-labeled polyphosphate as a skeletal imaging agent. Radiology 102:701–704, 1972.

    PubMed  CAS  Google Scholar 

  33. Eckelman WC, Richards P: Instant 99c-DTPA. J Nucl Med 11:761, 1970.

    PubMed  CAS  Google Scholar 

  34. Husak V, Vlcek J: Long-lived 99c in generator-produced 99c, its determination and significance. Int J Appl Radiat Isot 30:165–170, 1979.

    Article  PubMed  CAS  Google Scholar 

  35. Deutsch E, Heinemann WR, Zodda JP, Gilbert TW, Williams CC: Preparation of no carrier added technetium-99m complexes: Determination of the total technetium content of generator eluants. Int J Appl Radiat Isot 33:843–848, 1982.

    Article  CAS  Google Scholar 

  36. Smith TD, Richards P: A simple kit for the preparation of 99c-labeled red blood cells. J Nucl Med 17:126–132, 1976.

    PubMed  CAS  Google Scholar 

  37. Tofe AJ, Francis MD: In vitro stabilization of a low-tin bone-imaging agent (Tc-99m-Sn-HEDP) by ascorbic acid. J Nucl Med 17:820–825, 1976.

    PubMed  CAS  Google Scholar 

  38. Tofe AJ, Bevan JA, Fawzi MB, Francis MD, Silberstein EB, Alexander GA, Gunderson DE, Blair K: Gentisic acid: A new stabilizer for low tin skeletal imaging agents: Concise communication. J Nucl Med 21:366–370, 1980.

    PubMed  CAS  Google Scholar 

  39. Tofe AJ, Bevan JA, Fawzi MB, Whitehouse HS, Francis MD: Antioxidant stabilization of bone agents. In: Radiopharmaceuticals II: Proc 2nd Int Symp Radiopharmaceuticals, Seattle, New York, Society of Nuclear Medicine, p 637–644, 1979.

    Google Scholar 

  40. Bevan JA, Tofe AJ, Francis MD, Barnett BL, Benedict JJ: Tc-99m hydroxymethylene diphosphonate (HMDP): A new skeletal imaging agent. In: Radiopharmaceuticals II: Proc 2nd Int Symp Radiopharmaceuticals, Seattle, New York, Society of Nuclear Medicine, p 645–654, 1979.

    Google Scholar 

  41. Silberstein EB: A radiopharmaceutical and clinical comparison of 99c-Sn-hydroxymethylene diphosphonate with 99c-Sn-hydroxyethylidene diphosphonate. Radiology 136: 745–751, 1980.

    Google Scholar 

  42. Eckelman WC, Levenson SM: Chromatographic purity of 99c compounds. In: Quality Control in Nuclear Medicine, St Louis, CV Mosby Company, p 197–209, 1977.

    Google Scholar 

  43. Pauwels EKJ, Feitsma RIJ: Radiochemical quality control of 99c-labeled radiopharmaceuticals. Some daily practice guidelines. Eur J Nucl Med 2:97–103, 1977.

    Article  PubMed  CAS  Google Scholar 

  44. Pinkerton TC, Heineman WR, Deutsch E: Separation of technetium hydroxyethylidene diphosphonate complexes by anion exchange high performance liquid chromatography. Anal Chem 52:1106–1110, 1980.

    Article  CAS  Google Scholar 

  45. Pinkerton TC, Ferguson DL, Deutsch E, Heineman WR, Libson K: In vivo distributions of some component fractions of Tc(NH4)-HEDP mixtures separated by anion exchange high performance liquid chromatography. Int J Appl Radiat Isot 33:907–915, 1982.

    Article  PubMed  CAS  Google Scholar 

  46. Srivastava SC, Bandyopadhyay D, Meinken G, Richards P: Characterization of Tc-99m bone agents (MDP, EHDP) by reverse phase and ion exchange high performance liquid chromatography. J Nucl Med 22:P69, 1981 (abst.).

    Google Scholar 

  47. Henkin RE, Woodruff A, Chang W, Green AM: The effect of radiopharmaceutical incubation time on bone scan quality. Radiology 135:463–466, 1980.

    PubMed  CAS  Google Scholar 

  48. Russell CD, Majerik JE, Cash AG, Lindsay RH: Technetium pyrophosphate: A mixture?-preparation of Tc(III) and Tc(IV) pyrophosphates and their comparative biologic properties. Int J Nucl Med Biol 5:190–195, 1978.

    Article  PubMed  CAS  Google Scholar 

  49. Russell CD, Cash AG: Oxidation state of technetium in bone scanning agents as determined at carrier concentration by amperometric titration. Int J Appl Radiat Isot 30:485–488, 1979.

    Article  PubMed  CAS  Google Scholar 

  50. Korteland J, Dekker BG, de Ligny CL: The valence state of technetium-99 in its complexes with bleomycin, 1-hydroxyethylidene-1,1-diphosphonate and human serum albumin. Int J Appl Radiat Isot 31:315–318, 1980.

    Article  PubMed  CAS  Google Scholar 

  51. Van den Brand JAGM, Das HA, Dekker BG, de Ligny CL: The influence of experimental conditions on the efficiency of labeling of l-hydroxy-ethylidene-l, l-disodium phosphonate with 99c, using Sn(II) as the reductant. Int J Appl Radiat Isot 30:185–187, 1979.

    Article  Google Scholar 

  52. Van den Brand JAGM: Technetium (tin) ethane-1-hydroxy-1,1-diphosphonate complexes. Preparation, composition and biodistribution. Petten, The Netherlands Energy Research Foundation, Report No ECN-98, 1981.

    Google Scholar 

  53. Russell CD, Bischoff P: Properties of Tc-99m-pyrophosphate on ion-exchange columns. J Nucl Med 23:PI7, 1982 (abst.).

    Google Scholar 

  54. Deutsch E: Inorganic radiopharmaceuticals. In: Radiopharmaceuticals II: Proc 2nd Int Symp Radiopharmaceuticals, Seattle, New York, Society of Nuclear Medicine, p 129–146, 1979.

    Google Scholar 

  55. Tofe AJ, Francis MD: Optimization of the ratio of stannous tin: ethane-1-hydroxyl-1,1-diphosphonate for bone scanning with 99c-pertechnetate. J Nucl Med 15:69–74, 1974.

    PubMed  CAS  Google Scholar 

  56. Francis MD: The inhibition of calcium hydroxyapatite crystal growth by polyphosphonates and polyphosphates. Calcif Tiss Res 3:151–162, 1969.

    Article  CAS  Google Scholar 

  57. Francis MD, Russell RGG, Fleisch H: Diphosphonates inhibit formation of calcium phosphate crystals in vitro and pathological calcification in vivo. Science 165:1264–1266, 1969.

    Article  PubMed  CAS  Google Scholar 

  58. Francis MD, Ferguson DL, Tofe AJ, Bevan JA, Michaels SE: Comparative evaluation of three diphosphonates: In vitro adsorption (C-14 labeled) and in vivo osteogenic uptake (Tc-99m complexes). J Nucl Med 21:1185–1189, 1980.

    PubMed  CAS  Google Scholar 

  59. Subramanian G, Mfee JG, Thomas FD, Feld T, Zapf-Longo C, Palladino E: Localization of new Tc-99m labeled diphosphonates in experimental bone lesions. Presented at 19th Int Ann Meeting, Society of Nuclear Medicine, Europe, Bern, September 1981.

    Google Scholar 

  60. Subramanian G, Mfee JG, Blair RJ, Rosenstreich M, Coco M, Duxbury CE: Technetium-99m-labeled stannous imidophosphate, a new radiodiagnostic agent for bone scanning: Comparison with other 99c complexes. J Nucl Med 16:1137–1143, 1975.

    PubMed  CAS  Google Scholar 

  61. Wang TST, Mojdehi GE, Fawwaz RA, Johnson PM: A study of the relationship between chemical structure and bone localization of Tc-99m diphosphonic acids: Concise communication. J Nucl Med 20:1066–1070, 1979.

    PubMed  CAS  Google Scholar 

  62. Unterspann S, Finck W: Chemical structure and pharmacokinetics of 99c-labeled aminomethane diphosphonic acid derivatives. Eur J Nucl Med 6:527–530, 1981.

    Article  PubMed  CAS  Google Scholar 

  63. Fogelman I, Bessent RG: What do we want from a bone-scanning agent? J Nucl Med 21:296, 1980.

    PubMed  CAS  Google Scholar 

  64. Fogelman I, Pearson DW, Bessent RG, Tofe AJ, Francis MD: A comparison of skeletal uptakes of three diphosphonates by whole-body retention. J Nucl Med 22:880–883, 1981.

    PubMed  CAS  Google Scholar 

  65. Joseph SP, Ell PJ, Ross P, Donaldson R, Elliot AT, Brown NJG, Williams ES: 99c-imidodiphosphonate: A superior radiopharmaceutical for in vivo positive myocardial infarct imaging II. Clinical data. Br Heart J 40:234–241, 1978.

    Article  PubMed  CAS  Google Scholar 

  66. Cook DJ, Mahar LJ, Chatterton BE, Multutamby V, Steele PM, Baker RJ: 99c-imidodiphosphate-a better tracer for infarct-avid imaging. Eur J Nucl Med 7:207–210, 1982.

    Article  PubMed  CAS  Google Scholar 

  67. Zimmer AM, Isitman AT, Holmes RA: Enzymatic inhibition of diphosphonate: A proposed mechanism of tissue uptake. J Nucl Med 16:352–356, 1975.

    PubMed  CAS  Google Scholar 

  68. Rohlin M, Larsson A, Hammerstrom L: In vitro interaction between Tc-99m-labeled pyrophosphate, P-32-labeled pyrophosphate and rat tissues. Eur J Nucl Med 3:249–255, 1978.

    Article  PubMed  CAS  Google Scholar 

  69. Woltgens JHM: Inorganic pyrophosphatase in mineralizing hamster molars. IV. Modification of the inhibition of EDTA, diphosphonates and L-ascorbic acid by Zn + + and Co + +. Calcif Tiss Res 16:201–207, 1974.

    Article  CAS  Google Scholar 

  70. Halpern SE, Hagan, PL, Chauncey DM, Ayers P: The effect of parathyroid hormone on technetium-99m pyrophosphate distribution in rats. Eur J Nucl Med 5:515–519, 1980.

    Article  PubMed  CAS  Google Scholar 

  71. Rosenthall L, Kaye M: Technetium-99m pyrophosphate kinetics and imaging in metabolic bone disease. J Nucl Med 16:33–39, 1975.

    PubMed  CAS  Google Scholar 

  72. Kaye M, Silverton S, Rosenthall L: Technetium-99m pyrophosphate: Studiesin vivo and in vitro. J Nucl Med 16:40–45, 1975.

    PubMed  CAS  Google Scholar 

  73. Evans CH, Mears DC: Binding of the bone-seeking agent 99c-l-hydroxyethylidene-l, l-diphosphonic acid to cartilage and collagen in vitro and its stimulation by Er3+ and low. Calcif Tiss Int 32:91–94, 1980.

    Article  CAS  Google Scholar 

  74. Mae J, Hambright P, Valk P, Bearden AJ: Chemistry of 99c tracers. II. In vitro conversion of tagged HEDP and pyrophosphate (bone seekers) into gluconate (renal agent). Effects of Ca and Fe(II) on in vivo distribution. J Nucl Med 17:208–211, 1975.

    Google Scholar 

  75. Van Antwerp JD, Hall JN, O’Mara RE, Hilts SV: Bone scan abnormality produced by interaction oc-99m diphosphonate with iron dextran (Imferon). J Nucl Med 16:577, 1975 (abst.).

    Google Scholar 

  76. Parker JA, Jones AG, Davis MA, Mcllmoyle G, Tow DE: Reduced uptake of bone-seeking radiopharmaceuticals related to iron excess. Clin Nucl Med 1:267–268, 1976.

    Article  Google Scholar 

  77. Byun HH, Rodman SG, Chung KE: Soft-tissue concentration of 99c-phosphates associated with injections of iron dextran complex. J Nucl Med 17:374–375, 1976.

    PubMed  CAS  Google Scholar 

  78. Choy D, Murray JP, Hoschl R: The effect of iron on the biodistribution of bone scanning agents in humans. Radiology 140:197–202, 1981.

    PubMed  CAS  Google Scholar 

  79. Weinstein MB, Smoak WM: Technical difficulties in 99c labeling of erythrocytes. J Nucl Med 11:41–42, 1970.

    PubMed  CAS  Google Scholar 

  80. Want T, Fawwaz RA, Esser PD: Altered body distribution of Tc-99m pertechnetate in iatrogenic hyperaluminemia. J Nucl Med 19:381–383, 1978.

    Google Scholar 

  81. Jaresko GS, Zimmer AM, Pavel DG, Spies SM: Effect of circulating aluminum on the biodistribution of Tc-99m-Sn-diphosphonate in rats. J Nucl Med Technol 8:160–161, 1980.

    CAS  Google Scholar 

  82. Zalutsky MR, Rayudu GVS, Friedman AM: The biological behavior of tin following the administration of nine 99c-Sn complexes. Int J Appl Radiat Isot 4:224–230, 1977.

    CAS  Google Scholar 

  83. Davis L, Straw J, Dixon RS, Benedetto A, Sass NL: Biological half-life of a 95mtechnetium labeled bone agent. Health Phys 31:521–522, 1976.

    PubMed  CAS  Google Scholar 

  84. King MA, Casarett GW, Weber DA: A study of irradiated bone. I. Histopathologic and physiologic changes. J Nucl Med 20:1142–1149, 1979.

    PubMed  CAS  Google Scholar 

  85. King MA, Weber DA, Casarett GW, Burgener FA, Corriveau O: A study of irradiated bone. II. Changes in Tc-99m pyrophosphate bone imaging. J Nucl Med 21:22–30, 1980.

    PubMed  CAS  Google Scholar 

  86. Van Dyke D, Anger HO, Yano Y, Bozzini C: Bone blood flow shown with 18F and the positron camera. Am J Physiol 209:65–70, 1965.

    Google Scholar 

  87. Woolton R: The single-passage extraction of 18F in rabbit bone. Clin Sci Molec Med 47: 73–77, 1974.

    Google Scholar 

  88. Genant HK, Bautovich GJ, Singh M, Lathrop KA, Harper PV: Bone-seeking radionuclides: An in vivo study of factors affecting skeletal uptake. Radiology 113:373–382, 1974.

    PubMed  CAS  Google Scholar 

  89. Siegel BA, Donovan RL, Alderson PO, Mack GR: Skeletal uptake of 99c-diphosphonate in relation to local blood flow. Radiology 120:121–123, 1976.

    PubMed  CAS  Google Scholar 

  90. Garnett ES, Bowen DM, Coates G, Nahmias C: An analysis of factors which influence the local accumulation of bone-seeking radiopharmaceuticals. Invest Radiol 10:564–568, 1975.

    Article  PubMed  CAS  Google Scholar 

  91. Hughes SPF, Davies DR, Bassingthwaite JB, Knox FG, Kelly PJ: Bone extraction and blood clearance of diphosphonate in the dog. Am J Physiol 232:H341-H347, 1977.

    PubMed  CAS  Google Scholar 

  92. Karnovsky MJ: The ultrastructural basis of transcapillary exchanges. J Gen Physiol 52:Suppl.: 64s-93s, 1968.

    Article  Google Scholar 

  93. Davies DR, Bassingthwaite JB, Kelly PJ: Transcapillary exchange of strontium and sucrose in canine tibia. J Appl Physiol 40:17–22, 1976.

    PubMed  CAS  Google Scholar 

  94. Lavender JP, Khan RAA, Hughes SPF: Blood flow and tracer uptake in normal and abnormal canine bone: Comparisons with Sr-85 microspheres, Kr-81m, and Tc-99m MDP. J Nucl Med 20:413–418, 1979.

    PubMed  CAS  Google Scholar 

  95. Sagar V, Piccone JM, Charkes ND, Makler PT Jr: Skeletal tracer uptake and bone blood flow in dogs. J Nucl Med 19:705–706, 1978 (abst.).

    Google Scholar 

  96. Charkes ND, Makler PT Jr, Philips C: Studies of skeletal tracer kinetics. 1. Digital computer solution of a five-compartment model of (18F) fluoride kinetics in humans. J Nucl Med 19:1301–1309, 1978.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Jones, A.G. (1986). Radionuclide techniques for examination of bone disease. In: van Rijk, P.P. (eds) Nuclear Techniques in Diagnostic Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4233-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4233-2_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8379-9

  • Online ISBN: 978-94-009-4233-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics