Skip to main content

Radiopharmaceuticals

  • Chapter
  • 101 Accesses

Abstract

The criteria for a diagnostic radiopharmaceutical are:

  1. a.

    It must be suitable for the purpose intended.

  2. b.

    The compound must be of definite and/or reproducible chemical identity, purity and stability.

  3. c.

    It must have an adequate and reproducible radioactivity per unit quantity.

  4. d.

    It must be in the required physical form specified, e.g., in solution or as a colloid or macroaggregate of specified range of particle size(s).

  5. e.

    If injectable, it must be sterile and apyrogenic.

  6. f.

    It must provide the information required with the minimum dosage of radiation to the patient.

  7. g.

    It must be commercially available or capable of being produced at the site by a simple procedure, within a reasonable time so as to conserve the radionuclidic content, and at an acceptable cost.

  8. h.

    The position(s) of the tracer radionuclide(s) must be known if information is desired on the pharmacokinetics and metabolism of the molecule. The tracer must either not be removed or specifically removed if information is desired on the metabolism, deposition or translocation.

  9. i.

    The radiopharmaceutical must have a high activity per unit dose so as to avoid pharmacologic or toxic effects.

The criteria are obviously different for an agent used for imaging the kidney for morphological differences compared with an agent for measuring kidney function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McAfee JG, Subramanian G: Radioactive agents for imaging. In: Clinical scintillation imaging. Freeman LM and Johnson PM (eds.). New York, Grune and Stratton (2nd ed. 1975). p 15–16.

    Google Scholar 

  2. Ter-Pogossian MM, Phelps ME, Hoffman EJ et al.: A positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology 114:89–98, 1975.

    PubMed  CAS  Google Scholar 

  3. Tubis M: Review of radiopharmaceuticals for specific organs. In: Radiopharmacy. Tubis M and Wolf W (eds.). New York. Wiley-Interscience, p 583–587, 1976.

    Google Scholar 

  4. Schall GL, Quinn JL: Diagnosis of central nervous disease. In: Nuclear medicine. Blahd WH (ed.). New York, McGraw-Hill (2nd ed.), p 240–241.

    Google Scholar 

  5. Tubis M: The design of therapeutic radiopharmaceuticals. In: Radiopharmacy. Tubis M and Wolf W (eds.). New York, Wiley-Interscience, p 587–588, 1976.

    Google Scholar 

  6. Amiel S: Analysis of a radioisotope production program. In: Radioisotope production and quality control. Vienna IAEA, STI/DOC/10/128, p 20, 1971.

    Google Scholar 

  7. McAfee JG: Subramanian G et al.: Radionuclides for imaging. In: Clinical scintillation imaging. Freeman LM and Johnson PM (eds.). New York, Grune and Stratton (2nd ed. 1975). p 782–789.

    Google Scholar 

  8. Wolf W, Tubis M: Cyclotron-produced radiopharmaceuticals. In: Radiopharmacy. Tubis M and Wolf W (eds.). New York, Wiley-Interscience, p 279–301, 1976.

    Google Scholar 

  9. Silvester DJ: Accelerator production of medically useful radionuclides. In: Radiopharmaceuticals and labelled compounds, Vol 1, Vienna, IAEA, p 197–222, 1973.

    Google Scholar 

  10. Hoop B Jr, Laughlin JS et al.: Cyclotrons in nuclear medicine. In: Instrumentation in nuclear medicine. Hine GJ and Sorenson JA (eds.). Vol 2, New York, Academic Press, p 407, 1974.

    Google Scholar 

  11. Mani RS, Gopal NGS: Industrial production of radiopharmaceuticals. In: Radiopharmacy. Tubis M and Wolf W (eds.). New York, Wiley-Interscience, p 501–553, 1976.

    Google Scholar 

  12. Kamen MD: Radioactive tracers in biology, 2nd ed, New York, Academic Press, 1951.

    Google Scholar 

  13. Clark JC, Mathews CME et al.: Using cyclotron-produced isotopes at Hammersmith Hospital. Nucleonics, p 54–62, June 1967.

    Google Scholar 

  14. Glass HI: New applications of radiopharmaceuticals labelled with cyclotron-produced radionuclides. In: Medical radioisotope scintigraphy, Vienna, IAEA, p299–328, 1973.

    Google Scholar 

  15. Mishkin FS, Freeman LM: Progress in scintillation imaging. In: Clinical scintillation imaging, Freeman LM and Johnson PM (eds.). New York, Grune and Stratton (2nd ed.), p 717–719.

    Google Scholar 

  16. Harper PV, Lathrop KA et al.: Clinical feasibility of myocardial imaging with 13NH3. J Nucl Med 13:278, 280, 1972.

    Google Scholar 

  17. Cohen MB, Spolter L et al.: Production of 13N-labelled amino acids by enzymatic synthesis. In: Radiopharmaceuticals and labelled compounds, Vol 1, Vienna, IAEA, p 184–188, 1973.

    Google Scholar 

  18. Harper PV, Lathrop KA et al.: 13N Radiopharmaceuticals. In: Radiopharmaceuticals. Subramanian G, Rhodes BA, Cooper JF and Sodd VJ (eds.). New York, The Society of Nuclear Medicine, p 180–183, 1975.

    Google Scholar 

  19. Fluorine-18. In: Radioisotope production and quality control. Technical Reports Series No 128, Vienna, IAEA, p 589–594, 1971.

    Google Scholar 

  20. Wolf AP, Christman DR et al.: Synthesis of radiopharmaceuticals and labelled compounds using short-lived isotopes. In: Radiopharmaceuticals and labelled compounds, Vol 1, Vienna, IAEA, p 345–381, 1973.

    Google Scholar 

  21. Fowler JS, Finn RD et al.: The synthesis of 5-fluorouracil. VII. J Nucl Med 14:63–64, 1973.

    PubMed  CAS  Google Scholar 

  22. Robinson JD, MacDonald NS et al.: F-18 fluorordeoxyglucose: Remote, semi-automated production using a compact cyclotron. J Nucl Med 19:701–702, 1978.

    Google Scholar 

  23. Som P, Ansari AN et al.: Biodistribution in normal and tumor bearing animals of F-18 2-deoxy-2-fluoro-D-glucose (F-18-DG): A new agent for measuring myocardial glucose transport and metabolism. J Nucl Med 18:618, 1977.

    Google Scholar 

  24. Lambrecht RM, Wolf AP: Cyclotron and short-lived halogen isotopes for radiopharmaceutical applications. In: Radiopharmaceuticals and labelled compounds, Vol 1, Vienna, IAEA, p 275–290, 1973.

    Google Scholar 

  25. Phelps ME, Mazziotta JC, Hunag SC: Study of cerebral function with position positron computed tomography. J Cereb Blood Flow Metabol 2(2): 113–162. 1982.

    Article  CAS  Google Scholar 

  26. Knight L, Krohn KA et al.: 77Br: A new protein label. In: Radiopharmaceuticals. Subramanian G, Rhodes BA, Cooper JF and Sodd VJ (eds.). New York. Society of Nuclear Medicine, p 149–154, 1975.

    Google Scholar 

  27. Myers WG, Anger HO et al.: 123I for applications in diagnosis. In: Radiopharmaceuticals and labelled compounds, Vol 1, Vienna, IAEA, p 249–256, 1973.

    Google Scholar 

  28. Myers WG: Radioisotopes of iodine. In: Radioactive pharmaceuticals. Conf-651111, Oak Ridge, Tenn. U.S.A., US Atomic Energy Commission, p 217–243, 1966.

    Google Scholar 

  29. Weinreich R: Critical comparison of production methods for iodine-123. Qaim SM. Stöcklin G and Weinreich R (eds.). In: Iodine-123 in western europe. Jülich, Kernforschungsanlage, p 49–74, 1976.

    Google Scholar 

  30. Zum Winkel K: Studies of thyroid diseases using iodine-123. Ibid, p 9–18.

    Google Scholar 

  31. Tubis M, Posnick E et al.: Preparation and use of I131 labeled sodium iodohippurate in kidney function tests. Proc Soc Exp Biol Med 103:497–498, 1960.

    PubMed  CAS  Google Scholar 

  32. Tubis M, Nordyke RA et al.: The preparation and use of I131 labeled sulfobromophthalein in liver function testing. J Nucl Med 2:282–288, 1961.

    PubMed  CAS  Google Scholar 

  33. Wheeler OH, Verter HS et al.: Synthesis of labelled o-iodohippuric acid. J Label Compounds 7:40–45, 1971.

    Article  CAS  Google Scholar 

  34. Robbins PJ, Fortman DL: 123I-Hippuran for renal function studies. Preparation from available 123I. J Nucl Med 12:459, 1972.

    Google Scholar 

  35. Lambrecht RM, Mantescu A et al.: Preparation of high purity carrier-free 123I-iodine monochloride as iodination reagent for the synthesis of radiopharmaceuticals. IV. J Nucl Med 13:266–273, 1972.

    PubMed  CAS  Google Scholar 

  36. Butterman G, Wolf IH et al.: Clinical experiences in studying liver and kidney diseases using 123I-compounds, In: Iodine-123 in western europe, Jülich, Kernforschungsanlage, p 19–34, 1976.

    Google Scholar 

  37. Johnson PM: The liver. In: Clinical scintillation imaging. Freeman LM and Johnson PM (eds.). New York, Grune and Stratton (2nd ed. 1975), p 405–459.

    Google Scholar 

  38. Schilling RF: Diagnosis of pernicious anemia and other vitamin B12 malabsorption syndromes with radioactive B12. In: Nuclear medicine. Blahd WH (ed.). New York, Mraw- Hill (2nd ed.), p 444–447.

    Google Scholar 

  39. Edwards CL, Hayes RL: Tumor scanning with 67Ga citrate. J Nucl Med 10:103–105, 1969.

    PubMed  CAS  Google Scholar 

  40. Langhammer H, Glaubitt D et al.: 67Ga for tumor scanning. J Nucl Med 13:25–30, 1972.

    PubMed  CAS  Google Scholar 

  41. Pompe WB van der: Tumour imaging with non specific substances. Dissertation, University of Leiden, p 21–28, 36–41, 46–47, 59–71, 81–92, 98–100 and 111–117, 1978.

    Google Scholar 

  42. O’Mara RE, Charkes ND: The osseous system. In: Clinical scintillation imaging. Freeman LM and Johnson PM (eds.). New York, Grune and Stratton (2nd ed., 1975), p 547–548.

    Google Scholar 

  43. Yano Y: Radionuclide generators: Current and future applications in nuclear medicine. In: Radiopharmaceuticals. Subramanian G, Rhodes BA, Cooper JF and Sodd VJ (eds.). New York, Society of Nuclear Medicine, p 242, 1975.

    Google Scholar 

  44. Lillien D, Berger HG et al.: Indium-111 chloride: A new agent for bone marrow imaging. J Nucl Med 14:184–186, 1973.

    Google Scholar 

  45. Matin P, Goodwin DA: Cerebrospinal fluid scanning with n. J Nucl Med 12:668–672, 1971.

    PubMed  CAS  Google Scholar 

  46. Farrer PA, Saha GB et al.: Evaluation of 111In-transferrin as a tumor scanning agent in humans (Abstract). J Nucl Med 13:429, 1972.

    Google Scholar 

  47. Pompe WB van der: Tumour imaging with non specific substances. Dissertation, University of Leiden, 1978, p 71–73.

    Google Scholar 

  48. Konikowski T, Johns MF et al.: Brain tumor scanning agents compared in an animal model. J Nucl Med 15:508, 1974.

    Google Scholar 

  49. Lillien DL, Jones SE et al.: A clinical evaluation of indium bleomycin. Cancer 35:1036–1049, 1975.

    Article  Google Scholar 

  50. Silberstein EB: Cancer diagnosis. The role of tumor imaging radiopharmaceuticals. Am J Med 60:226–237, 1976.

    Article  PubMed  CAS  Google Scholar 

  51. MacDonald NS: Cyclotron-produced radionuclides. In: Radiopharmaceuticals. Subramanian G, Rhodes BA, Cooper JF (eds.). New York, Society of Nuclear Medicine, p 165–173, 1975.

    Google Scholar 

  52. Mclntyre PA: Agents for bone marrow imaging: An evaluation. In: Radiopharmaceuticals. Subramanian G, Rhodes BA, Cooper JF and Sodd VD (eds.). New York, Society of Nuclear Medicine, p 343–348, 1975.

    Google Scholar 

  53. O’Mara RE, Charkes ND: The osseous system. In: Clinical scintillation imaging. Freeman LM and Johnson PM (eds.). New York, Grune and Stratton (2nd ed.), p 539–541, 555–556, 1975.

    Google Scholar 

  54. Hamilton GW, Narahara KA et al.: Myocardial imaging with thallium 201: Effect of cardiac drugs on myocardial images and absolute tissue distribution. J Nucl Med 19:10–16, 1978.

    PubMed  CAS  Google Scholar 

  55. Mayron LW, Kaplan E et al.: The preparation of high specific activity quantities of 81Rb and its use in an 81Rb-81mKr generator. Int J Appl Radiat Isot 25:237–238, 1974.

    Article  CAS  Google Scholar 

  56. Kaplan E, Mayron LW et al.: Definition of myocardial perfusion by continuous infusion of krypton-81m. Am J Cardiol 37:878–884, 1976.

    Article  PubMed  CAS  Google Scholar 

  57. Kaplan E, Mayron LW et al.: Pulmonary ventilation imaging and funtion studies with krypton-81m. In: Proc. Int At Energy Agency, SM-210/58, Medical radionuclide imaging. Vol II, Vienna, IAEA, p 341–349, 1977.

    Google Scholar 

  58. Mani RS, Gopal NGS: Industrial production of radiopharmaceuticals. In: Radiopharmacy. Tubis M and Wolf W (eds.). New York, Wiley-Interscience, p 534–535, 1976.

    Google Scholar 

  59. Lawrence JH, Tobias CA et al.: Heavy particles in the treatment of acromegaly and Cushing’s disease and their potential value in other neoplastic diseases. In: Nuclear medicine, New York, Mraw-Hill, 2nd ed., p 806–820, 1971.

    Google Scholar 

  60. Richards P: Nuclide Generators. In: Radioactive pharmaceuticals, Symp No 6, Conf 651111. Oak Ridge, US Atomic Energy Commission, p 155–163, 1966.

    Google Scholar 

  61. Subramanian G, McAfee JG: Radioisotope Generators. In: Radiopharmacy. Tubis M and Wolf W (eds.). New York, Wiley-Interscience, p 255–277, 1976.

    Google Scholar 

  62. Sodium Pertechnetate Tc99m Solution. In: The United States pharmacopeia, Rockville, Md. USP Convention, 20th Revision, p 764–765, 1980.

    Google Scholar 

  63. Richards P, O’Brien MJ: Rapid determination of 99mMo in separated 99mTc. J Nucl Med 10:517, 1969.

    PubMed  CAS  Google Scholar 

  64. Subramanian G, McAfee JG: A radioisotope generator of indium 113m. Int J Appl Radiat Isotop 18:215–221, 1967.

    Article  CAS  Google Scholar 

  65. Stern HS, Scheffel U: Use of short-lived radionuclides in scanning. In: Proceedings of symposium in nuclear medicine - Its Current Status in Medical Practice. Conf-670958, Biol and Med (TID-4500), Springfield Va., Clearing House for Federal Scientific and Technical Information, National Bureau of Standards, 1967.

    Google Scholar 

  66. Larson SM, Nelp WB: The placenta. In: Clinical scintillation scanning. Freeman LM and Johnson PM (eds.). New York, Grune and Stratton (2nd ed.), p 623–638, 1975.

    Google Scholar 

  67. Tubis M, Cohen MB et al.: Indium 113m sulfide (‘INSMA’). A new lung-scanning agent. IAEA-SM-164/10. In: Medical radioisotope scintigraphy, Vienna, International Atomic Energy Agency, Vol 2, p 395–402, 1973.

    Google Scholar 

  68. Weinstein MB, Smoak WM: Technical difficulties in 99mTc-labeling of erythrocytes. J Nucl Med 11:41–42, 1970.

    PubMed  CAS  Google Scholar 

  69. Cohen Y: Purity and stability of labeled compounds. In: Radiopharmacy. Tubis M and Wolf W (eds.). New York, Wiley-Interscience, p 379–401, 1976.

    Google Scholar 

  70. Tubis M: Radiopharmaceutics. In: Radiopharmacy, New York, Wiley-Interscience. p 452–459, 1976.

    Google Scholar 

  71. Eckelman WC, Levenson SM: Radiopharmaceutical chemistry of technetium and iodine. In: Textbook of nuclear medicine: Basic science. Rocha AFG and Harbert JC (eds.). Philadelphia, Lea and Febiger, p 192–233, 1978.

    Google Scholar 

  72. Zimmer AM, Pavel DG: Rapid miniaturized quality-control procedures for Tc-99m radiopharmaceuticals. J Nucl Med 18:1230–1233, 1977.

    PubMed  CAS  Google Scholar 

  73. Rhodes BA, Bolles TF: Albumin microspheres: Current methods of preparation and use. In: Radiopharmaceuticals. Subramanian G, Rhodes BA, Cooper DF and Sodd VJ (eds.). New York, Society of Nuclear Medicine, p 282–291, 1975.

    Google Scholar 

  74. Tubis M: Radiopharmaceutics. In: Radiopharmacy. Tubis M and Wolf W (eds.). New York, Wiley-Interscience, p 421–423, 1976.

    Google Scholar 

  75. Sterilization. In: The United States pharmacopeia, 20th Revision. USP Convention, Rockville, Md, p 878–882, 1980.

    Google Scholar 

  76. Leach KG: Sterilization by filtration. J Nucl Med 12:140–141, 1971.

    PubMed  CAS  Google Scholar 

  77. De Blanc HJ, De Land FH et al.: Automated radiometric detection of bacteria in 2,967 blood cultures. Appl Microbiol 22:846–849, 1971.

    Google Scholar 

  78. Bactec Model 460. Johnston Laboratories Inc., 3 Industry Lane, Cockeysville, Md 21030.

    Google Scholar 

  79. Tubis M: Biological tests for quality control. In: Radiopharmacy. Tubis M and Wolf W (eds.). New York, Wiley-Interscience, p 560–573, 1976.

    Google Scholar 

  80. Cooper JF: Pyrogen testing. In: Quality control in nuclear medicine: radiopharmaceuticals, instrumentation and in vitro assays. Rhodes BA (ed.). St Louis, Mo, CV Mosby Co, p 229–237, 1977.

    Google Scholar 

  81. Tubis M: Other pharmaceutical considerations. In: Radiopharmacy. Tubis M and Wolf W (eds.). New York, Wiley-Interscience, p 462–464, 1976.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Tubis, M. (1986). Radiopharmaceuticals. In: van Rijk, P.P. (eds) Nuclear Techniques in Diagnostic Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4233-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4233-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8379-9

  • Online ISBN: 978-94-009-4233-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics