Skip to main content

Computer-aided Analysis of Some Thermoplastics Processing Operations

  • Chapter
Book cover Developments in Plastics Technology —3
  • 158 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pittman, J. F. T., Wood, R. D., Alexander, J. M. and Zienkiewicz, O. C. (eds), Numerical methods in industrial forming processes, proc. Int. Conf., swansea, Pineridge Press, Swansea, UK, 1982.

    Google Scholar 

  2. Pittman, J. F. T., Wood, R. D., Zienkiewicz, O. C. and Alexander, J. M, Numerical analysis of forming processes, J. Wiley & sons, Chichester, Sussex, 1984.

    Google Scholar 

  3. Pearson, J. R. A. and Richardson, S. M. (eds), Computational analysis of polymer processing, Applied Science Publishers, London1983.

    Google Scholar 

  4. White, J. L., ‘Dynamics, heat transfer and rheological aspects of melt spinning: a critical review’, poly. Engng rev., 1, 1981, 297–362.

    Google Scholar 

  5. (a) Pearson, J. R. A., Mechanical principles of polymer melt processing, Pergamon press, Oxford, 1966, pp. 60–3.(b) Ibid., pp. 128–34

    Google Scholar 

  6. Crochet, M. J., Davies, A. R. and Walters, K., Numerical simulation of non-newtonian flow, Elsevier science publishers, Amsterdam1984.

    Google Scholar 

  7. Various authors, special issue on numerical simulation of viscoelastic flows, j. Non-newtonian fl. Mech., 16 (1–2), 1984.

    Google Scholar 

  8. Pittman, J. F. T. and Nakazawa, S., ‘Analysis of melt flow and heat transfer using finite elements’, polymer engng rev. 4, 1984, 143–175.

    Google Scholar 

  9. Schechter, R. S., ‘On teady flow of a non-newtonian fluid in cylinder ducts’, A.E J., 7, 1961, 445–448.

    Google Scholar 

  10. Middleman, S., ‘Flow of power law fluids in rectangular ducts’, Tans. Soc. Rheol., 1965,9; 83–93.

    Google Scholar 

  11. Wheeler, J. A. and Wissler, E. H., The friction factor-reynolds number relation for the steady flow of pseudoplastic fluids through rectangular ducts, Aiche. J., 11, 1965, 207–216.

    Google Scholar 

  12. Mceachern, D. W., ‘Axial laminar flow of a non-newtonian fluid in an annulus’, Aiche J., 12, march 1966, 328–32.

    Google Scholar 

  13. Nebrensky, J. and Ulbrecht, J., ‘Non-newtonian flow in annular ducts’, Collection of Czech Chem. Commun., 1968, 33; 363–375.

    Google Scholar 

  14. Mitsuishi, N., Kitayama, Y. and Aoyogi, Y., ‘Non-newtonian flow in non-circular ducts’, Int. Chem. Engng, 8, 1968, 168–174.

    Google Scholar 

  15. Mitsuishi, N. and Aoyagi, Y., ‘Non-newtonian flow in non-circular ducts’, Chem. Engng sei., 24, 1969, 309–319.

    Google Scholar 

  16. Röthemeyer, F., ‘Das druckströmungsfeld in zylindrischen fleisskana- len mit beliebigem querschnitt’, rheol. Acta, 9, 1970, 259–63.

    Google Scholar 

  17. Kozicki, W., Chou, C. H. and Tiu, C., ‘Non-newtonian flow in ducts of arbitrary cross-sectional shape’, Chem. Eng. Sei., 21, 1966, 665–679.

    Google Scholar 

  18. Miller, C., ‘Predicting non-newtonian flow behaviour in ducts of unusual cross-section’, Ind. Eng. Chem. Fundam., 11, 1972, 524–528.

    Google Scholar 

  19. Hanks, R. W., ‘On the prediction of non-newtonian flow behaviour in ducts of non-circular cross-section’, Ind. Eng. Chem. Fundam., 13, 1974, 62–66.

    Google Scholar 

  20. Gee, R. E. and Lyon, J. B., ‘non-isothermal flow of viscous non- newtonian fluids’, ind. Engng chem., 49, 1957, 956–60.

    CAS  Google Scholar 

  21. Gerrard, J. E., Steidler, J. K. and Appeldoorn, J. K., ‘Viscous heating in capillaries’, I. & e. C. Fund., 4, 1965, 332–340.

    Google Scholar 

  22. Forsyth, T. H. and Murphy, N. F., ‘Temperature profiles of molten flowing polymers in a heat exchanger’, Aiche J., 15, 1969, 758–763.

    Google Scholar 

  23. Kim, H. T. and Collins, E. A., ‘Temperature profiles for polymer melt in tube flow, part ii, conduction and shear heating corrections’. Poly. Engng and Sei., 11, 1971, 83–92.

    Article  CAS  Google Scholar 

  24. Forrest, G. and Wilkinson, W. L., ‘Laminar heat transfer to power-law fluids in tubes with constant wall temperature’, Trans. I. Chem. Engnrs, 51, 1973, 331–338.

    Google Scholar 

  25. Forrest, G. and Wilkinson, W. L., ‘Laminar heat transfer to temperature-dependent bingham fluids in tubes’, Int. J. Heat and Mass Transf., 16, 1973, 2377–2391.

    Article  Google Scholar 

  26. Losson, J. M., ‘A mathematical model is used in predicting die performance’, Japan Plastics, jan. 1974, 22–28.

    Google Scholar 

  27. Forrest, G. and Wilkinson, W. L., ‘Laminar heat transfer to power-law fluids in tubes with constant wall heat flux’, Trans. I. Chem. Engnrs, 52, 1974, 10–16.

    Google Scholar 

  28. Winter, H. H., ‘Temperature fields in extruder dies with circular, annular or slit cross-sections’, Poly. Engng and Sei., 15, 1975, 84–89.

    Article  CAS  Google Scholar 

  29. Mennig, G., ‘Zur berechnung der temperaturverteilung bei der düsenströmung hochviskoser massen’, Kunststoffe, 65, 1975, 693–695.

    CAS  Google Scholar 

  30. Hulatt, M. and Wilkinson, W. L., ‘Heat transfer to molten polymers flowing through tubes’, Poly. Engng and Sei., 18, 1978, 1148–154.

    Article  Google Scholar 

  31. Hullat, M., Jarzebski, A. B. and Wilkinson, W. L., ‘Heat transfer to flowing polymer melts’, /. Non-newtonian fluid mech., 7, 1980, 345–357.

    Article  Google Scholar 

  32. Nowak, Z., Gryglaszewski, P. and Stracharskatargosz, J., ‘Pressure drop in non-isothermal laminar flow of power-law fluids in tubes with various thermal conditions’, Warme- und stoff übertragung, 14, 1980, 181–288.

    Google Scholar 

  33. Parnaby, J., Hassan, G. A., Helmy, H. A. and Ali, A., ‘Design of plastics processing machinery using lumped parameter methods’, Plastics and rubber processing and applications, 1, 1981, 303–315.

    Google Scholar 

  34. Jarzebski, A. B. and Wilkinson, W. L., ‘Non-isothermal developing flow of a power-law fluid in a converging slit’, /. Non-newtonian fluid mech., 12, 1983, 1–11.

    Article  CAS  Google Scholar 

  35. Kime, M. E., Brown, R. A. and Armstrong, R. C., ‘The roles of inertia and shear thinning in flow of an inelastic liquid through an axisymmetric sudden contraction’, /. Non-newtonian fluid mech., 13, 1983, 341–363.

    Article  Google Scholar 

  36. Mitsoulis, E., Vlachopoulos, J. and Mirza, F. A ‘Numerical simulation of entry and exit flows in slit dies’, Poly Engng and Sei., 24, 1984 707–715.

    Article  Google Scholar 

  37. Mitsoulis, E. and Vlachopoulos, J., ‘Effect of reynolds number in laminar flow through a sudden planar contraction’, Aiche J., 31, 1985, 1736–1739.

    Article  CAS  Google Scholar 

  38. Durst, F. and Loy, T., ‘Investigation of laminar flow in a pipe with sudden contraction of the cross section area’, Computers and Fluids, 13, 1985, 15–36.

    Article  Google Scholar 

  39. Rashid, k., ‘finite element analysis of non-newtonian flow and heat transfer’, phd thesis, university college, swansea, uk, 1983.

    Google Scholar 

  40. Caswell, B. and Tanner, R. I., ‘Wirecoating die design using finite element methods’, Poly. Engnr. and Sei., 18, 1973, 416–421.

    Article  Google Scholar 

  41. Viriyayuthakorn, m. And deboo, r. V., ‘a finite element model for cable jacketing simulation’, antec (soc. Plastics engnrs us), 1983, 178–82.

    Google Scholar 

  42. Nickell, R. E., Tanner, R. I. and Caswell, B., ‘The solution of viscous incompressible jet and free surface flows using finite element methods’,/. Fluid. Mech., 65, 1974, 189–206.

    Article  Google Scholar 

  43. Basu, S., ‘A theoretical analysis of non-isothermal flow in wire-coating co-extrusion dies’, Poly Engng and Sei., 21, 1981, 1128–1138.

    Article  CAS  Google Scholar 

  44. Nakazawa, S., Pittman, J. T. and Zienkiewicz, O. C., ‘Numerical solution of flow and heat transfer in polymer melts’, In finite elements in fluids, R. H. Gallagher, d. H. Norrie, j. T. Oden and o. C. Zienkiewicz, j. Wiley & Sons, Chichester, Sussex, 1982, pp. 251–303.

    Google Scholar 

  45. Lenir, V. L., ‘Computerization of wire insulating lines—an industrial approach’. Polymer Engng and Sei., 24, 1984, 633–644.

    Article  Google Scholar 

  46. Booy, M. L., ‘A network flow analysis of extrusion dies and other flow systems’, Poly. Engng and Sei., 22, 1982, 432–437.

    Article  CAS  Google Scholar 

  47. Tadmor, Z., Broyer, E. and Gutfinger, C., ‘Flow analysis network (fan)—a method for solving flow problems in polymer processing’. Poly. Engng and sei., 14, 1974, 660–665.

    Article  CAS  Google Scholar 

  48. Fenner, R. T. and Nadiri, F., ‘Finite element analysis of polymer melt flow in cable-covering crossheads’, Poly. Engng and Sei., 19, 1979, 203–209.

    Article  CAS  Google Scholar 

  49. Menges, G., Cordes, H. and Masberg, U., ‘Strömungsfelder in komplexen fliesskanalen’, Kunststoffe, 70, 1980, 138–143.

    Google Scholar 

  50. Masberg, U., ‘Three-dimensional calculation of velocity fields in complex flow channels’, Practical rheology in polymer processing (proc. Pri conf. Loughborough, uk), 1980, pp. 3.1–3.9.

    Google Scholar 

  51. Wortberg, j., beiss, k., dlerkes, a., masberg, u., franzkoch, b. And michaeli, w., ‘wege zum berechnen von extrusionswerkzeugen’. Ikv colloquium 10, aachen, w. Germany, 1980, pp. 267–96.

    Google Scholar 

  52. Lawal, A. and Mujumdar, A. S., ‘Laminar flow and heat transfer in power-law fluids flowing in arbitrary cross-sectional ducts’. Numerical heat transfer, 8, 1985, 217–244.

    Article  Google Scholar 

  53. Fenner, R. T., ‘Developments in the analysis of steady screw extrusion of polymers’. Polymer, 18, 1977, 617–635.

    Article  CAS  Google Scholar 

  54. Griffith, R. M., ‘Fully developed flow in screw extruders’, I. & E. C. Fund., 1, 1962, 180–187.

    Article  CAS  Google Scholar 

  55. Zamodits, H. J. and Pearson, J. R. A., ‘Flow of polymer melts in extruders. Part I. The effect of the transverse flow and of a superposed, steady temperature profile’. Trans. Soc. Rheol., 13, 1969, 357–385.

    Article  CAS  Google Scholar 

  56. Zamodits, h. J., phd thesis, cambridge university, UK, 1964.

    Google Scholar 

  57. Martin, B., Pearson, J. R. A. and Yates, B., Report no. 5, polymer processing research centre, department of chemical engineering, Cambridge University, UK, oct. 1969.

    Google Scholar 

  58. Fenner, R. T., Extruder screw design, iliffe books for the plastics institute, london, 1970.

    Google Scholar 

  59. Yates, b., phd thesis, cambridge university, uk, 1968.

    Google Scholar 

  60. Fenner, R. T., ‘The design of large hot melt extruders’, Polymer, 16, 1975, 298–304.

    Article  CAS  Google Scholar 

  61. Elbirli, B. and Lindt, J. T., ‘A note on the numerical treatment of the thermally developing flow in screw extruders’, Poly. Engng and sei., 24, 1984, 482–487.

    Article  CAS  Google Scholar 

  62. Martin, b., phd thesis, cambridge university, uk, 1969.

    Google Scholar 

  63. Dyer, D. F., ‘A numerical solution for the single screw extrusion of a polymer melt’, A. I.Ch.E. J., 15, 1969, 823–8.

    CAS  Google Scholar 

  64. Palit, K. and Fenner, R. T., ‘Finite element analysis of slow non-newtonian flow’, A.I.Ch.E. J., 18, 1972, 628–633.

    CAS  Google Scholar 

  65. Palit, K. and Fenner, R. T., ‘Finite element analysis of slow non-newtonian flows’, Aiche J., 18, 1972, 1163–1170.

    CAS  Google Scholar 

  66. Palit, k., phd thesis, Imperial college, london university, UK, 1972.

    Google Scholar 

  67. Palit, K., Polymer processing research report no. 2, dept of mech. Engng, Imperial College, London, march 1974.

    Google Scholar 

  68. Palit, K., ‘Analysis of melt flow in polymer processing using finite Elements’, Proc. Int. Conf., science and technology of polymer processing, N. P. Suh and N-H. Sung, Mit Press, Cambridge, Massachusetts, 1977, pp. 357–379.

    Google Scholar 

  69. Nebrensky, J., Smith, J. M. and Potman, F. T., ‘Flow and heat transfer in extruders: a variational analysis applied in helical coordinates’, Poly. Engng and sci., 13, 1973, 209–215.

    Article  CAS  Google Scholar 

  70. Hami, M. L. and Pittman, J. T., ‘Finite element solutions for flow in a single screw extruder, including curvature effects’, Poly. Engng and sci., 20, 1980, 339–348.

    Article  CAS  Google Scholar 

  71. Choo, K. P., Hami, M. L. and Pittman, J. F. T., ‘Deep channel operating characteristics of a single-screw extruder: finite element predictions and experimental results for isothermal non-newtonian flow’, Poly. Engng and sci., 21, 1981, 100–104.

    Article  CAS  Google Scholar 

  72. Winter, H. H., ‘Temperature induced pressure gradient in the clearance between screw flight and barrel in a single screw extruder’, Poly. Engng and sci., 20, 1980, 406–412.

    Article  CAS  Google Scholar 

  73. Pittman, J. T. and Rashid, K., ‘Heat transfer in recirculating extruder channel flow’, J. Polymer engng, 5, 1985, 1–48.

    Article  CAS  Google Scholar 

  74. Helmy, H. A. and Parnaby, J., ‘Computer aided optimal melt screw design’, Poly. Engng and sci., 16, 1976, 437–449.

    Article  CAS  Google Scholar 

  75. Tadmor, Z. and Broyer, E., Solids conveying in screw extruders. Part III. Non-isothermal model, Poly. Engng and sci., 12, 1972, 378–386.

    Article  CAS  Google Scholar 

  76. Darnell, W. H. and Mole A. J., ‘Solids conveying in extruders’, S.P.E. J., 2 1956, 20–29.

    Google Scholar 

  77. Kacir, L. and Tadmor, Z., ‘Solids conveying in screw extruders. Part ii. The delay zone’, Poly. Engng and sci., 12, 1972, 387–395.

    Article  CAS  Google Scholar 

  78. Lovegrove, J. G. A. and Williams, J. G., ‘Solids conveying in a single screw extruder; the role of gravity forces’, J. Mech. Engng sci., 15, 1973, 114–122.

    Article  Google Scholar 

  79. Tadmor, Z., ‘Fundamentals of plasticating extrusion’, Poly. Engng and sci., 4 1966, 185–190.

    Article  Google Scholar 

  80. Maddock, B. H., ‘A visual analysis of flow and mixing in extruder screws’. S.P.E. J., 3 1959, 383–389.

    Google Scholar 

  81. Lindt, J. T., ‘A dynamic melting model for a single-screw extruder’, Poly. Engng and sci., 21, 1981, 1162–1166.

    Article  CAS  Google Scholar 

  82. Tadmor, Z., Duvdevani, I. J. and Klein, I., ‘Melting in plasticating extruders. Theory and experiment’, Poly. Engng and sci., 4 1967, 2–21.

    Google Scholar 

  83. Lindt, J. T., Mathematical modelling of melting of polymers in single-screw extruders: a critical review, Antec (soc. Plastics engnrs us)3, 1984, 73–76.

    Google Scholar 

  84. Lipshitz, S. D., Lavie, R. and Tadmor, Z., ‘A melting model for reciprocating screw injection-moulding machines’, Poly. Engng and sci., 14, 1974, 553–559.

    Article  CAS  Google Scholar 

  85. Donovan, R. C., ‘The plasticating process in injection moulding’, Poly. Engng and sci., 14, 1974, 101–111.

    Article  CAS  Google Scholar 

  86. Chung, C. L., ‘A new theory for single screw extrusion’, Modern Plastics, 45, 1968, 110–15 and 178–198.

    Google Scholar 

  87. Hinrichs, D. R. and Lilleleht, L. U., ‘A modified melting model for plastifying extruders’, Poly. Engng and sci., 10, 1970, 268–73.

    Google Scholar 

  88. Donovan R. C., ‘A theoretical melting model for plasticating extruders’, Poly. Engng and sci., 11, 1971, 247–257.

    Article  CAS  Google Scholar 

  89. Mondvai, I., Halasz, L. and Molnar, i., ‘extrusion von thermo- plasten ii’, plaste kautschuk, 20, 1973, 630–8.

    Google Scholar 

  90. Edmondson, I. R. and Fenner, R. T., ‘Melting of thermoplastics in single screw extruders’, Polymer, 16, 1975, 49.

    Article  CAS  Google Scholar 

  91. Cox, A.D. and Fenner, R. T., ‘Melting performance in the single screw extrusion of thermoplastics’, Poly. Engng and sci., 20, 1980, 562–571.

    Article  CAS  Google Scholar 

  92. Lindt, J. T., ‘A dynamic melting model for single-screw extruders’. Poly. Engng and sci., 16, 1976, 284–291.

    Article  CAS  Google Scholar 

  93. Shapiro, J., Halmos, A. L. and Pearson R. A. , , ‘Melting in single screw extruders’. Polymer, 17, 1976, 905–918.

    Article  CAS  Google Scholar 

  94. Halmos, A. L., Pearson, J. R. . and Trottnow, R., ‘Melting in single screw extruders’, Polymer, 19, 1978, 1199–2216.

    Article  CAS  Google Scholar 

  95. Fukasi, H., Kunio, T., Shinya, S. and Nomoura, A., ‘A plasticating model for single-screw extruders’, Poly. Engng and sci., 22, 1982, 578–586.

    Article  Google Scholar 

  96. Elbirli, B., Lindt, J. T., Gottgetreu, S. R. and Baba, S. M., ‘Mathematical modeling of melting of polymers in barrier-screw extruders’, Poly. Engng and sci. 23, 1983, 86–94.

    Article  Google Scholar 

  97. Elbirli, b., Lindt, j. T., gottgetreu, s. R. And baba, s. M., ‘mathematical modeling of melting of polymers in a single-screw extruder’. Poly. Engng and sci., 24, 1984, 988–99.

    Google Scholar 

  98. Lindt, J. T. and Elbirli, B., Effect of the cross-channel flow on the melting performance of single screw extruders, Poly. Engng and sci., 25, 1985, 412–418.

    Article  CAS  Google Scholar 

  99. Klein, I. and Marshall, D. L., ‘Fundamentals of plasticating extrusion’, Poly. Engng and sci., 4 1966, 198–202.

    Article  Google Scholar 

  100. Klein, i. And tadmor, z., ‘the simulation of the plasticating screw extrusion process with a computer programmed theoretical model’, poly. Engng and sci., 9, 1969, 11–21.

    Article  CAS  Google Scholar 

  101. Tadmor, z. And klein, i., engineering principles of plasticating extrusion, krieger, new york, 1978.

    Google Scholar 

  102. Klein, i. and marshall, d. I. (eds), computer programs for plastic engineers, reinhold, new york, 1968.

    Google Scholar 

  103. Klein, i., ‘predicting the effect of screw wear on the performance of plasticating extruders’, poly. Engng and sci., 15, 1975, 444–50.

    Article  CAS  Google Scholar 

  104. Agur, e. E. And vlachopoulos, j., ‘numerical simulation of a single-screw plasticating extruder’, antec (soc. Plastics engnrs, us) 1982, 465–8.

    Google Scholar 

  105. Tadmor, z., lipshitz, s. D. And Lavie, r., ‘dynamic model of a plasticating extruder’, poly. Engng and scl, 14, 1974, 112–193.

    Article  CAS  Google Scholar 

  106. Denson, c. D. And hwang jr, j. R. ‘The influence of axial pressure gradient on flow rate for newtonian liquids in a self-wiping, co-rotating twin screw extruder’, poly. Engng and sci., 20, 1980, 965–71.

    Article  CAS  Google Scholar 

  107. Janssen, l. B. P. M., ‘twin screw extrusion’, elsevier science publishers, amsterdam, 1978.

    Google Scholar 

  108. Lai-fook, r. A. L-t., phd thesis, dept mech. Engng, imperial college, london university, uk, 1985.

    Google Scholar 

  109. Riedler, j., ‘quasi three-dimensional finite element solution for a twin-screw extruder’, in numerical methods in laminar and turbulent flow, conference proc., c. Taylor, b. A. Schrefter, eds, pineridge press, swansea, uk, 1981, pp. 191–206.

    Google Scholar 

  110. Kamal, m. R. And lafleur, p. G., ‘computer simulation of injection moulding’, poly. Engng and sci., 22, 1982, 1066–74.

    Article  Google Scholar 

  111. Grmela, m., ‘common structure compatibility and complementarity of mathematical models for injection moulding’, poly. Engng and sci., 24, 1984, 673–85.

    Article  Google Scholar 

  112. Kamal, m. R., tan, v. And ryan, m. E., ‘injection molding: a critical profile’, in proc. Int. Conf., science and technology of polymer processing, n. P. Suh and n-h. Sung, eds. Mit press, cambridge, massachusetts, 1977, pp. 34–75.

    Google Scholar 

  113. richardson, s. M., pearson, h. J. And pearson, j. R. A., ‘simulation of injection moulding’, plastics and rubber: processing, june 1980, 55–60.

    Google Scholar 

  114. Kuo, y., ‘some applications of mathematical modeling to the injection moulding of complex production parts’, in proc. Int. Conf., science and technology of polymer processing, n. P. Suh and n-h. Sung, eds, mit press, cambridge, massachusetts, 1977, pp. 580–604.

    Google Scholar 

  115. Harry, d. H. And parrott, r. G., ‘numerical simulation of injection mold filling’, poly. Engng and sci., 10, 1970, 209–14.

    Article  CAS  Google Scholar 

  116. Berger, j. L. And gogos, c. G., ‘a numerical simulation of the cavity filling process with pvc in injection molding’, poly. Engng and sci., 13, 1973, 102–12.

    Article  CAS  Google Scholar 

  117. Kenig, s. And kamal, m. R., ‘cooling molded parts—a rigorous analysis’, s.p.e. J., 26, july 1970, 50–7.

    Google Scholar 

  118. Kamal, m. R. And kenig, s., ‘the injection molding of thermoplastics, part i; theortical model’, poly. Engng and sci., 12, 1972, 294–301.

    Article  CAS  Google Scholar 

  119. Kamal, m. R. And kenig, s., ‘the injection molding of thermoplastics, part ii. Experimental test of the model’, poly. Engng and sci., 12, 1972, 302–8.

    Article  CAS  Google Scholar 

  120. Stevenson, j. F., ‘a simplified method for analyzing mold filling dynamics. Part i: theory’, poly. Engng and sci., 18, 1978, 577–82.

    Article  Google Scholar 

  121. Stevenson, j. F., ‘a simplified method for analyzing mold filling dynamics. Part ii. Extensions and comparisons with experiment’, poly. Engng and sci., 19, 1979, 849–57.

    Article  CAS  Google Scholar 

  122. Williams, g. And lord, h. A., ‘mold filling studies for the injection molding of thermoplastic materials. Part ii. The transient flow of plastic materials in the cavities of injection-molding dies’, poly. Engng and sci., 15, 1975, 569–82.

    Article  Google Scholar 

  123. Titomanlio, g., ‘estimation of injection pressure during mold filling’. Poly. Engng and sci., 22, 1982, 324–8.

    Article  CAS  Google Scholar 

  124. Thienel, p. And menges, g., ‘mathematical and experimental determination of temperature, velocity and pressure fields in flat molds during the filling process in injection molding of thermoplastic’, poly. Engng and sci., 18, 1978, 314–20.

    Article  Google Scholar 

  125. Wang, k. K., ‘a system approach to injection molding process’, polym.-plast. Technol. Eng., 14, 1980, 75–93.

    Article  CAS  Google Scholar 

  126. Echenagucia, j., fricke, a. L. And hassler, j. C., ‘nodal positioning (npa)—a numerical method for determining flow behaviour of thermoplastic materials’, poly. Engng and sci., 20, 1980, 769–72.

    Article  CAS  Google Scholar 

  127. Titomanlio, g., acierno, d. And la mantia, f. P., ‘modelling of the packing step in the injection molding of thermoplastic materials’, ing. Chim. Ital., 16, 1980, 110–12.

    Google Scholar 

  128. Isayev, a. I. And hariharan, t., ‘volumetric effects in the injection moulding of polymers’, poly. Engng and sci., 25, 1985, 271–8.

    Article  CAS  Google Scholar 

  129. Bigg, d. M., ‘application of the marker and cell technique to polymer processing problems’, antec, 1975, 301–6.

    Google Scholar 

  130. Kamal, m. R. And lafleur, p. G., ‘a model for the prediction of microstructure distribution in thermoplastics injection molding’. Poly. Engng and sci., 24, 1984, 692–7.

    Article  CAS  Google Scholar 

  131. Richardson, s., ‘hele shaw flows with a free boundary produced by the injection of fluid into a narrow channel’. J. Fluid meek., 56, 1972, 609–18.

    Article  Google Scholar 

  132. Kuo, y. And kamal, m. R., ‘the fluid mechanics and heat transfer of injection mold filling of thermoplastic materials’, a.i.ch.e. J., 22, 1976, 661–9.

    CAS  Google Scholar 

  133. Kuo, y. And kamal, m. R., ‘flows of thermoplastics in the filling and packing stages of injection moulding’, in proc. Int. Conf., science and technology of polymer processing, n. P. Suh and n-h. Sung, eds, mit press, cambridge, massachusetts, 1977, pp. 329–48.

    Google Scholar 

  134. Ryan, m. E. And chung, t-s., ‘conformal mapping analysis of injection mold filling’, poly. Engng and sci., 20, 1980, 642–51.

    Article  CAS  Google Scholar 

  135. Broyer, e., gutfinger, c. And tadmor, z., ‘a theoretial model for the cavity filling process in injection molding’, trans. Soc. Rheol., 19, 1975, 423–44.

    Article  Google Scholar 

  136. Hieber, c. A. And shen, s. F., ‘a finite element/finite difference simulation of the injection-molding process’, j. Non-newtonian fluid mech., 7, 1980, 1–32.

    Article  CAS  Google Scholar 

  137. Wang, k. K., shen, s. F., hieber, c. A. And stevenson, j. F., ‘cornell injection moulding project’ in proc. Int. Conf., science and technology of polymer processing, n. P. Suh and n-h. Sung, eds, mit press, cambridge, massachusetts. 1977, pp. 293–314.

    Google Scholar 

  138. Hieber, c. A., socha, l. S., shen, s. F., wang, k. K. And isayev, a. I., ‘experimentation and simulation for filling thin cavities of variable gap thickness’, antec, 1981, 759–63.

    Google Scholar 

  139. Hieber, c. A., socha, l. S., shen, s. F., wang, k. K. And isayev, a. I., ‘filling thin cavities of variable gap thickness: a numerical and experimental investigation’, poly. Engng and sci., 23, 1983, 20–6.

    Article  CAS  Google Scholar 

  140. Hieber, c. A., ‘coupled-flow-path method for simulating the injection molding filling stage’, antec, 1982, 356–8.

    Google Scholar 

  141. Nunn, r. E. And fenner, r. T., ‘flow and heat transfer in the nozzle of an injection moulding machine’, poly. Engng and sci., 17, 1977, 811–18.

    Article  CAS  Google Scholar 

  142. Williams, g. And lord, h. A., ‘mold filling studies for the injection molding of thermoplastic materials. Part i. The flow of plastic material in hot- and cold-walled circular channels’. Poly. Engng and sci., 15, 1975, 553–68.

    Article  CAS  Google Scholar 

  143. Wang, v. W., wang, k. K. And hieber, c. A., ‘an iterative computer program for runner-system design in injection molding’, antec, 1983, 663–5.

    Google Scholar 

  144. Upadhyay, r. K. And is ayev, a. I., ‘experimental and theoretical investigation of polymer flow in a channel with abrupt contraction or expansion’, antec, 1983, 714–16.

    Google Scholar 

  145. Isayev, a. I., upadhyay, r. K. And shen, s. F., ‘experimental and theoretical investigation of polymer flow in a converging and diverging channel’, antec, 1982, 298–301.

    Google Scholar 

  146. Isayev, a. I. And chung, b., ‘flow of polymeric melts in short tubes’, antec, 1984, 433–8; poly. Engng and sci., 25, 1985, 264–70.

    Google Scholar 

  147. Hieber, c. A., wang, v. W., wang, k. K. And chung, b., ‘the effect of processing conditions on the pressure losses in a runner-gate- cavity system’, antec, 1984, 769–71.

    Google Scholar 

  148. Isayev, i., ‘pressure and velocity jump in channel flow of polymers— modelling and experiment’, antec, 1983, 710–13.

    Google Scholar 

  149. Hieber, c. A., upadhyay, r. K. And isayev, a. I., ‘non-isothermal polymer flow in noncircular runners’, antec, 1983, 698–700.

    Google Scholar 

  150. Naitove, m. H., ‘practical questions and answers on computerized mold filling analysis’, plastics technology, april 1984, 74–9.

    Google Scholar 

  151. Naitove, m. H., ‘more questions and answers on computer mold filling analysis’, plastics technology, may 1984, 75–8.

    Google Scholar 

  152. Gates, r. D., ‘the changing relationship between designer and mold- maker due to cad/cam’, antec, 1983, 907–8.

    Google Scholar 

  153. Collins, s. H., ‘cad/cam: its implications for the plastics industry’, antec, 1983, 904–6.

    Google Scholar 

  154. Menges, g., ‘computer-aided engineering: the coming revolution’, plastics engng, august 1983, 37–42.

    Google Scholar 

  155. Wang, k. K., ‘a system approach to injection moulding’, polym.-plast. Technol. Eng., 14, 1980, 75–93.

    Article  CAS  Google Scholar 

  156. Anon., the moldflow philosophy, moldflow (europe) ltd, chislehurst, kent, uk and moldflow australia pty, boronia, victoria.

    Google Scholar 

  157. Austin, c., computer simulation of the flow of plastic into an injection mold, soc. Plast. Engnrs usa, june 1982.

    Google Scholar 

  158. Watkinson, k., ‘evaluation of moldflow computer aided injection mould tool design, members’ report no. 81, rapra, shawbury, shrewsbury, uk, 1983.

    Google Scholar 

  159. Cox, h. W., mentzer, c. C. And custer, r. C., ‘the flow of thermoplastic melts: experimental and predicted’, antec, 1983, 694–7.

    Google Scholar 

  160. Mohnberg, h. J. And bach, k., ‘das moldflow system in vergleich zwischen theorie und praxis’, plastverarbeiter, 34, 1983, 1087–91.

    Google Scholar 

  161. Anon., introducing the moldflow ibm i pc xt system, moldflow (europe) ltd, chislehurst, kent, uk and moldflow australia pty, beronia, victoria.

    Google Scholar 

  162. Buckinski, a. M., ‘an integrated cad/cam system for plastic injection molds’, antec, 1983, 909–11.

    Google Scholar 

  163. Singh, k. J., ‘complete mold filling analysis of thermoplastics with a single computer run’, antec, 1984, 783–5.

    Google Scholar 

  164. Menges, g. And haack, w., ‘how to design a moulding part to suit particular plastic rules—the computer as an important aid’, antec, 1984, 954–8.

    Google Scholar 

  165. Bangert, h. And menges, g., ‘systematic design of injection moulds and use of computers’, polymer engng reviews., 1, 1981, 113–68.

    Google Scholar 

  166. Kemper, w., geisbüch, p., schmidt, l. And menges, g., ‘rheological layout of injection moulds’, antec, 1981, 767–70.

    Google Scholar 

  167. Kemper, w., bangert, h., lichius, u., paar, m., schlüter, h., schmidt, l. And schmidt, j., ‘kalkulations—und konstruktionshilfen beim entwurf von spritzgiesswerkzeugen’, ikv colloquium no. 11, 1982, pp. 239–75.

    Google Scholar 

  168. Bernhardt, e. C. (ed.) Computer aided engineering for injection moulding, hanser, for soc. Plastics engnrs, usa, 1983.

    Google Scholar 

  169. Ryder, l. B., ‘faster cooling for blow-molding’, plastics engng, may 1975, 18–25.

    Google Scholar 

  170. Singh, e. J. And wang, h-p., ‘computer analysis to optimize mold cooling process’, antec, 1982, 330–7.

    Google Scholar 

  171. carslaw, h. S. And jaeger, j. C., conduction of heat in solids, clarendon press, oxford, uk, 1959, pp. 282–3.

    Google Scholar 

  172. Ockendon, j. R. And hodgkins, w. R. (eds), moving boundary problems in heat flow and diffusion, oxford university press, oxford, 1975.

    Google Scholar 

  173. Atthey, d. R., ‘a finite difference scheme for melting problems’, j. Inst. Maths. Applies., 13, 1974, 353–66.

    Google Scholar 

  174. Voller, v. R., cross, m. And walton, p. G., ‘assessment of weak solution numerical techniques for solving stefan problems’, proc. Int. Conf. Numerical methods in thermal problems. R. W. Lewis and k. Morgan, eds, pineridge press, swansea, uk, 1979, p. 172.

    Google Scholar 

  175. Menges, g., kulik, m. And rhiel, f., ‘entformungstemperatur und kühlzeit bei der herstellung extrusionsgeblasener hohlkörper’, plastverarbeiter, 24, 1973, 685–90.

    Google Scholar 

  176. Dietz, w., ‘refroidissement des plastiques; methods de calcul’, plastiques modernes et elastomers, may 1975, 104–11.

    Google Scholar 

  177. Singh, k. J., ‘computer software for plastic cooling analysis—a new approach’, antec, 1984, 962–4.

    Google Scholar 

  178. Kamal, m. R. And kalyon, d., ‘heat transfer and microstructure in extrusion blow-molding’, poly. Engng and sei., 23, 1983, 503–7.

    Article  CAS  Google Scholar 

  179. Gutfinger, c., broyer, e. And tadmor, z., ‘melt solidification in polymer processing’, poly. Engng and sei., 15, 1975, 515–24.

    Article  CAS  Google Scholar 

  180. Ryan, m. E. And dutta, a., ‘Mathematical modeling of the blow moulding process’, poly. Engng and sei., 22, 1982, 1075–82.

    Article  Google Scholar 

  181. Edwards, m. F., suvanaphen, p. K. And wilkinson, w. L., ‘heat transfer in blow moulding operations’, poly. Engng and sei., 19, 1979, 910–16.

    Article  CAS  Google Scholar 

  182. Edwards, m. F., georghiades, s. And suvanaphen, p. K., ‘a study of the cooling of blow-moulded objects’, plastics and rubber processing and applications, 1, 1981, 161–5.

    Google Scholar 

  183. Dietz, w., ‘a cooling time model for plastics processing operations’, poly. Engng and sei., 18, 1978, 1030–6.

    Article  CAS  Google Scholar 

  184. Dietz, w., ‘die wärme—und temperaturleitfähigkeit von kunststoffen’, colloid and polymer sei., 255, 1977, 755–72.

    Article  CAS  Google Scholar 

  185. Bonancina, c., comini, g., fasano, a. And primicerio, m., ‘numerical solution of phase-change problems’, int. J. Heat and mass transfer, 16, 1973, 1825–32.

    Article  Google Scholar 

  186. Pham, q. T., ‘a fast, unconditionally stable finite-difference scheme for heat conduction with phase change’, int. J. Heat and mass transfer, 28, 1985, 2079–84.

    Article  Google Scholar 

  187. Edwards, m. F., private communication, 1984.

    Google Scholar 

  188. Tacke, k-h., ‘Discretization of the explicit enthalpy method for planar phase change’, int. J. For num. Meth. In engng, 21, 1985, 543–54.

    Article  Google Scholar 

  189. Comini, g., del guidice, s., lewis, r. W. And zienkiewicz, o. C., ‘finite element solution of non-linear heat conduction problems with special reference to phase change’, int. J. Num. Meth. Engng, 8, 1974, 613–24.

    Article  Google Scholar 

  190. Morgan, k., lewis, r. W. And zienkiewicz, o. C., ‘an improved algorithm for heat conduction problems with phase change’, int. J. Num. Meth. Engng, 12, 1978, 1191–5.

    Article  Google Scholar 

  191. Lewis, r. W., morgan, k. And roberts, p. M., ‘determination of thermal stress in solidification problems’, in numerical analysis of forming processes, j. F. T. Pittman, r. D. Wood, o. C. Zienkiewicz and j. M. Alexander, eds, j. Wiley & sons, chichester, sussex, 1984, pp. 405–31.

    Google Scholar 

  192. Samonds, m., morgan, k. And lewis, r. W., ‘finite element modelling of solidification in sand castings employing an implicit-explicit algorithm’, appl. Math. Modelling, 9, 1985, 170–4.

    Article  Google Scholar 

  193. Lewis, r. W., morgan, k. And roberts, p. M., ‘Application of an alternating-direction finite element method to heat transfer problems involving phase change’, numerical heat transfer, 7, 1984, 471–82.

    Article  Google Scholar 

  194. Pittman, j. F. T. And nakazawa, s., ‘a finite element system for analysis of melt flow and heat transfer’, in numerical methods in industrial forming processes, proc. Int. Conf., swansea, j. F. T. Pittman, r. D. Wood, j. M. Alexander and o. C. Zienkiewicz, eds, pineridge press, swansea, uk, 1982, pp. 523–34.

    Google Scholar 

  195. Pittman, j. F. T. And nakazawa, s., ‘finite element analysis of polymer processing operations’, numerical analysis of forming processes, j. F. T. Pittman, r. D. Wood, o. C. Zienkiewicz and j. M. Alexander, eds, j. Wiley & sons, chichester, sussex, 1984, pp. 165–218.

    Google Scholar 

  196. Kenig, s. And kamal, m. R., ‘temperature profiles in the injection molding of thermoplastics’, antec, 1982, 595–603.

    Google Scholar 

  197. Sifleet, w. L., dinos, n. And collier, j. R., ‘unsteady-state heat transfer in a crystallizing polymer’, poly. Engng and sci., 13, 1973, 10–14.

    Article  CAS  Google Scholar 

  198. Kamal, m. R. And chu, e., ‘isothermal and nonisothermal crystallization of polyethylene’, poly. Engng and sci., 23, 1983, 27–31.

    Article  CAS  Google Scholar 

  199. Malkin, ya. A., beghisev, v. P., keapin, i. A. And andrianova, z. S., ‘general treatment of polymer crystallization kinetics—part 2. The kinetics of nonisothermal crystallization’, poly. Engng and sci., 24, 1984, 1402–8.

    Article  CAS  Google Scholar 

  200. Tseng, m. M., ‘computer cooling analysis to select bubbler or baffle’, antec, 1984, 959–61.

    Google Scholar 

  201. Schauer, k. R., ‘the moldcool computer-aided design program’, antec, 1983, 863–64.

    Google Scholar 

  202. Anon., ‘mold cooling software now for blow molding, and mold heating for thermosets’, plastics technology, april 1984, 11.

    Google Scholar 

  203. Pittman, j. F. T. And mahmoudzadeh, h., ‘performance of melt thermocouples. 1. The flush-mounted type’, poly. Engng rev., 3, 1983, 63–74.

    Google Scholar 

  204. Pittman, j. F. T. And mahmoudzadeh, h., ‘performance of melt thermocouples. 2. The upstream-pointing parallel-to-flow type’, poly. Engng rev., 3, 1983, 75–107.

    Google Scholar 

  205. Van dam, m. And janeschitz-kriegl, h., ‘temperature measurement and heat transfer in flowing polymer melts’, int. J. Heat and mass transfer, 28, 1985, 395–406.

    Article  Google Scholar 

  206. Vlachopoulos, j. And mitsoulis, e., ‘fluid flow and heat transfer in calendering’, to appear in advances in transport processes, j. Wiley and sons, new york.

    Google Scholar 

  207. Kiparissides, c. And vlachopoulos, j., ‘finite element analysis of calendering’, poly. Engng and sci., 16, 1976, 712–19.

    Article  CAS  Google Scholar 

  208. Kiparissides, c. And vlachopoulos, j., ‘a study of viscous dissipation in the calendering of power-law fluids’, poly. Engng and sci., 18, 1978, 210–14.

    Article  CAS  Google Scholar 

  209. Agassant, j. F. And espy, m., ‘theoretical and experimental study of the molten polymer flow in the calender bank’, poly. Engng and sci., 25, 1985, 118–21.

    Article  CAS  Google Scholar 

  210. Mitsoulis, e., vlachopoulos, j. And mirza, f. A., ‘calendering analysis without the lubrication approximation’, poly. Engng and sci., 25, 1985, 6–180.

    Article  CAS  Google Scholar 

  211. Pittman, j. F. T. And nakazawa, s., ‘finite element calculation of history dependent quantities in polymer processing’, in numerical methods in industrial forming processes, proc. Int. Conf., swansea, j. F. T. Pittman, r. D. Wood, j. M. Alexander and o. C. Zienkiewicz, eds, pineridge press, swansea, uk, 1982, pp. 597–609.

    Google Scholar 

  212. Mohr, w. C., saxton, r. L. And jepson, c. H., ‘theory of mixing in single-screw extruder’, ind. Engng chem., 49, 1957, 1857–62.

    Article  CAS  Google Scholar 

  213. Pinto, g. And tadmor, z., ‘mixing and residence time distribution in melt screw extruders’, poly. Engng and sci., 10, 1970, 279–88.

    Article  CAS  Google Scholar 

  214. Bigg, d. M. And middleman, s., ‘mixing in a screw extruder. A model for residence time distribution and strain’, ind. Engng chem. Fundam., 13, 1974, 66–71.

    Article  CAS  Google Scholar 

  215. Bigg, d. M., ‘on mixing in polymer flow systems’, poly. Engng and sci., 15, 1975, 684–9.

    Article  CAS  Google Scholar 

  216. Ottino, j. M., ranz, w. E. And macosko, c. W., ‘a framework for description of mechanical mixing of fluids’, a.i.ch.e. J., 27, 1981, 565–74.

    CAS  Google Scholar 

  217. Ottino, j. M. And chella, r., ‘laminar mixing of polymeric liquids; a brief review and recent theoretical developments’, poly. Engng and sci., 23, 1983, 357–79.

    Article  CAS  Google Scholar 

  218. Pittman, j. F. T., ‘a new approach to the analysis of mixing in viscous liquids’, proc. Multistream 84. Iche (uk) symposium series no. 94, 1984, 3.10–18.

    Google Scholar 

  219. Chella, r. And ottino, j. M., ‘fluid mechanics of mixing in a single-screw extruder’, ind. Eng. Chem. Fundam., 24, 1985, 170–80.

    Article  CAS  Google Scholar 

  220. Bigg, d. And middleman, s., ‘laminar mixing of a pair of fluids in a rectangular cavity’, ind. Eng. Chem. Fundam., 13, 1974, 184–90.

    Article  CAS  Google Scholar 

  221. Erwin, l. And mokhtarian, f., ‘analysis of mixing in modified single screw extruders’, poly. Engng and sci., 23, 1983, 49–60.

    Article  Google Scholar 

  222. Givler, r. C., crochet, m. J. And pipes, r. B., ‘numerically predicted fiber orientation in dilute suspensions’, in numerical methods in industrial forming processes, proc. Int. Conf., swansea, j. F. T. Pittman, r. D. Wood, j. M. Alexander and o. C. Zienkiewicz, eds, pineridge press, swansea, uk, 1982, pp. 559–76.

    Google Scholar 

  223. Gillespie, j. W. Jr, vanderschuren, j. A. And pipes, r. B., ‘process induced fiber orientation. Numerical simulation with experimental verification’, polymer composites, 6, 1985, 82–6.

    Article  CAS  Google Scholar 

  224. Folgar, f. And tucker, c. L. III, ‘orientation behaviour of fibers in concentrated suspensions’, j. Of reinforced plastics and composites, 3, 1984, 98–119.

    Article  CAS  Google Scholar 

  225. Jackson, w. C., folgar, f. And tucker, c. L. III, ‘prediction and control of fiber orientation in molded parts’, in polymer blends and composites in multiphase systems, c. D. Han, ed., adv. Chem. Ser. (acs) no 206, 1984, 279–99.

    Chapter  Google Scholar 

  226. Tucker, c. L. III. ‘Compression molding of polymers and short fiber composites’, in injection and compression molding fundamentals, a. I. Isayev, ed., marcel dekker, new york, 1984.

    Google Scholar 

  227. Modlen, g. F., ‘re-orientation of fibres during mechanical working’, J. Mat. Sci., 4, 1969, 283–9.

    Article  Google Scholar 

  228. Ingen housz, J. F., ‘thermal load in the processing of thermoplastic’, poly. Engng and sci., 17, 1977, 828–31.

    Article  Google Scholar 

  229. Morette, r. A. And gogos, g. G., ‘viscous dissipation in capillary flow of rigid pvc and pvc degradation’, poly. Engng and sci., 8, 1968, 272–80.

    Article  Google Scholar 

  230. Thompson, e. G., pittman, j. F. T. And zienkiewicz, o. C., ‘some integration techniques for the analysis of viscoelastic flows’, int. J. Num. Methods in engng, 3, 1983, 165–77.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Elsevier Applied Science Publishers LTD

About this chapter

Cite this chapter

Pittman, J.F.T. (1986). Computer-aided Analysis of Some Thermoplastics Processing Operations. In: Whelan, A., Craft, J.L. (eds) Developments in Plastics Technology —3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4183-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4183-0_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8358-4

  • Online ISBN: 978-94-009-4183-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics