Skip to main content

Fatigue and Long Term Strength of Thermoplastics

  • Chapter
Developments in Plastics Technology —3

Abstract

Thermoplastics are complex materials in their response to applied loads. They do not obey Hooke’s law, being non-linear in their relationship between stress and strain. They are also viscoelastic in nature. This property is seen either as a time dependent response in stress (stress relaxation), when held under conditions of constant strain, or as a time dependent response in strain (creep), when subject to a constant continuously applied load. As a general rule their mechanical properties are more dependent upon temperature than metals which they seek to displace in engineering components. As a class of materials they have, in their unmodified form, comparatively low modulus and low strength. In addition to this complicated response to continuously applied loads, which results in a progressive decrease in strength with elapsed time under load, thermoplastics still suffer from ‘fatigue’ under cyclic loads. Hence the qualification implied within the title. At one time1 these responses were known as static and dynamic fatigue, but this terminology led to some confusion with engineers. Consequently, as a matter of convention nowadays, the term ‘fatigue’ is restricted to the effects of cyclic or intermittent loads only, as is the case for metals, and ‘long-term strength or creep rupture’ to the effect of continuously applied loads.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gotham, K. V., ‘A formalized experimental approach to the fatigue of thermoplastics’ Plastics and Polymers, Aug. 1969, 309–319.

    Google Scholar 

  2. Gotham, K. V. and Hitch, M. J., ‘Factors affecting fatigue resistances in rigid uPVC pipe compositions’, The Brit. Poly. Journal, 10, March 1978, 47–52.

    Article  CAS  Google Scholar 

  3. Peterson, R. E., Stress Concentration Factors, John Wiley and Sons Inc., New York, 1974.

    Google Scholar 

  4. Turner, S., ‘Mechanical Testing of Plastics’ George Godwin, London, in association with The Plastics and Rubber Institute, London, 1983.

    Google Scholar 

  5. BS4618, Recommendations for the Presentations of Plastics Design Data, British Standards Institution, London, 1970.

    Google Scholar 

  6. Haward, R. N. and Mann, J., Proc. Roy. Soc. A, 282, 1964, 120–136.

    Google Scholar 

  7. Spurr, O. K. and Niegisch, W. D. App. Poly. Sci., Part A-2, 6, 1962, 1083.

    Google Scholar 

  8. Kambour, R. P., ‘Structure and properties of crazes in polycarbonate and other glassy polymers’, Polymer, 5 (3), March 1964, 143.

    Article  CAS  Google Scholar 

  9. Kambour, R. P. and Robertson, R. E., Chap. 11, in Vol. 1, Polymer Science, A. D. Jenkins, Ed., North-Holland, Amsterdam, 1972.

    Google Scholar 

  10. Bucknall, C. B. and Smith, R. R., ‘Stress whitening in high impact polystyrenes’ Polymer, 6 (8), 1965, 437–446.

    Google Scholar 

  11. Gotham, K. V., ‘Long-term strength of thermoplastics: the ductile- brittle transition in static fatigue’ Plastics and Polymers, April 1972, 59–64.

    Google Scholar 

  12. Riddell, M. N., Koo, P. G. and O’Toole, J. L., ‘Fatigue mechanisms of thermoplastics’ Poly. Eng. Sci., 6, 1966, 363.

    Article  CAS  Google Scholar 

  13. Vincent, P. I., ‘Localised plastic deformation and fracture’ TR No. 97 Division of Polymer Science, Case Western Reserve University, Cleveland, Ohio.

    Google Scholar 

  14. Gotham, K. V. and Hitch, M. J., ‘Design considerations for fatigue in uPVC pressure pipelines’ Pipes and Pipelines International, Feb. 1975.

    Google Scholar 

  15. Mandell, J. F., Smith, K. L. and Huang, D. D., ‘Effects of residual stress and orientation on the fatigue of injection moulded polysulfone’ Poly. Eng. Sci., 21 (17), mid Dec. 1981, 1173–80.

    Article  Google Scholar 

  16. Frost, N. E., Marsh, K. J. and Pook, L. P., Metal Fatigue, Clarendon Press, Oxford, 1974.

    Google Scholar 

  17. Bayer, Technical Literature Makrolon (Polycarbonate), 1975.

    Google Scholar 

  18. Knott, J. F., Fundamentals of Fracture Mechanics, Butterworth, London, 1973.

    Google Scholar 

  19. Van Den Boogaart, A. and Turner, C. E., ‘Fracture mechanics’: review of principles, Trans. J. Plastics Institute, 31, Aug. 1963, 109–17.

    Google Scholar 

  20. Marshall, G. P., Linkins, N. H., Culver, L. E. and Williams, J. G., ‘Environmental stress cracking in polyolefins’ SPE J. 28 (9), Sept. 1972, 26.

    Google Scholar 

  21. Marshall, G. P., Williams, J. G. and Turner, L. E., ‘Fracture, toughness and absorbed energy measurements in Impact tests on brittle materials’ J. Materials Sci, 8, 1973, 949–56.

    Article  CAS  Google Scholar 

  22. Williams, J. G., Fracture Mechanics of Polymers, Ellis Horwood Ltd, Publishers, Chichester, Sussex, 1984.

    Google Scholar 

  23. Griffith, A. A., Phil. Trans. R. Soc., A221, 1920, 163.

    Google Scholar 

  24. Orowan, E., Trans. Inst. Engrs. Shipbuilders Scotland, 89, 1945, 165.

    Google Scholar 

  25. Irwin, G. R., 9th Inter. Congr. Appl. Mech. VIII, Paper 101 (11), University of Brussels, 1957, p. 245.

    Google Scholar 

  26. Paris, P. C., Proc. Sagamore Army Materials Res. Conf, 10th, 1964, p. 107.

    Google Scholar 

  27. Hertzberg, R. W. and Manson, J. A., Fatigue of Engineering Plastics, Academic Press, New York, 1980.

    Google Scholar 

  28. Constable, I., Williams, J. G. and Burns, D. J., ‘Fatigue and cyclic thermal softening of thermoplastics’ J. Mech. Eng. Sci., 12 (1), 1970, 20–9.

    Article  Google Scholar 

  29. Opp, D. A., Skinner, D. W. and Wiktorek, R. J., ‘A model for polymer fatigue’ Proc. 24th ANTEC Conf., SPE, 1968, 149149.

    Google Scholar 

  30. Hamon, B. V., Proc. IEE, 94 (IV), 1952, 151.

    Google Scholar 

  31. Gotham, K. V. and Wright, D. C., ‘Fatigue in polycarbonate’ Plast. and Rubber Processing and Applications, 4 (1), 1984, 43–51.

    CAS  Google Scholar 

  32. BS 3518, Methods of Fatigue Testing, British Standards Institution, London, 1970.

    Google Scholar 

  33. Taprogge, R., ‘D 53441’ Kunststoff-Rundschau, 9, Sept. 1968, 439–45.

    Google Scholar 

  34. Burgess, R. H., Manufacture and Processing of PVC, Applied Science Publishers Ltd, London, 1982.

    Google Scholar 

  35. Fletcher, K., Haward, R. N. and Mann, J., ‘Rubber reinforced polystyrene copolymers’ Chem. and Ind., 45, 1965, 18541854.

    Google Scholar 

  36. Bucknall, C. B., Gotham, K. V. and Vincent, P. I., Fracture II, ‘The empirical approach’ Chap. 10, in Vol. 1, Polymer Science A. D. Jenkins Ed., North-Holland, Amsterdam, 1972.

    Google Scholar 

  37. Gotham, K. V. and Hough, M. C., The Durability of High Temperature Polymers, RAPRA, Shawbury, 1984.

    Google Scholar 

  38. Stephenson, R. C., Plast. & Rubber Materials Applications, May 1979, 45–51.

    Google Scholar 

  39. Davis, A. and Sims, D., Weathering of Polymers, Applied Science Publishers Ltd, London, 1983.

    Google Scholar 

  40. Imperial Chemical Industries PLC, Maranyl-Nylon 66 Compounds, Tech. Service Note N104, London.

    Google Scholar 

  41. Dupont, Zytel Nylon Resins Design Handbook.

    Google Scholar 

  42. Kohan, M. I., Nylon Plastics, John Wiley and Sons, New York, 1973.

    Google Scholar 

  43. Butt, L. T. and Wright, D. C., Use of Polymers in Chemical Plant Construction, Applied Science Publishers Ltd, London, 1980.

    Google Scholar 

  44. Baer, E., Engineering Design for Plastics, SPE Polymer Science and Engineering Series, Reinhold Publishing Corp., New York, 1964.

    Google Scholar 

  45. Gotham, K. V. and Wright, D. C., ‘Solvent crazing criteria’ Poly. Eng. Sei., 23 (3), Feb. 1983, 135–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Elsevier Applied Science Publishers LTD

About this chapter

Cite this chapter

Gotham, K.V. (1986). Fatigue and Long Term Strength of Thermoplastics. In: Whelan, A., Craft, J.L. (eds) Developments in Plastics Technology —3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4183-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4183-0_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8358-4

  • Online ISBN: 978-94-009-4183-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics