Skip to main content

Phenomenological Constitutive Models for Metals

  • Chapter
Modelling Small Deformations of Polycrystals

Abstract

In this chapter the hardening rules for metals in the range of small strains are discussed. The simple hardening rules, such as isotropic, kinematic or mixed hardening models, involve one scalar and/or one tensor state variable whose evolution rule is expressed in terms of the plastic strain rate. The composite hardening rules involve more state variables and multiple loading surfaces for which evolution rules depend on a previous deformation history. Such composite rules can be formulated by using either the structural approach or the representative variable approach. Whereas the structural approach requires numerous state variables and material parameters, the representative variable approach offers a much simpler material description. The creep hardening rules for viscoplastic deformation processes are discussed at the end of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong, P. J. and Frederick, C. O. (1966). A mathematical representation of the multiaxial Bauschinger effect, Centr. Electr. Gen. Board Rep. BN731.

    Google Scholar 

  • Arutunyan, R A and Vakulenko, V. A. (1965). On multiple loading of elastic-plastic solids (in Russian), Izv. Akad. Nauk SSSR, Mekhanika, 4, 53–64.

    Google Scholar 

  • Asaro, R J. (1983). Crystal plasticity, J. Appl. Mech., 50, 921–33.

    Article  Google Scholar 

  • Backhaus, G. (1972a). Zur analytischen Erfassung des allgemeinen Baushinger- effects, Acta Mech., 5, 31–42.

    Article  Google Scholar 

  • Backhaus, G. (1972b). Fliesspannungen und Fliessbedingung bei zyklischen Verformungen, ZA.M.M., 56, 337–48.

    Google Scholar 

  • Bailey, R. W. (1926). Note on the softening of strain hardening metals and its relation to creep, J. Inst. Metals, 35, 27–40.

    Google Scholar 

  • Baltov, A and Sawczuk, A. (1965). A rule of anisotropic hardening, Acta Mech., 1, 81–91.

    Article  Google Scholar 

  • Batdorf, B. and Budiansky, B. (1954). Polyaxial stress-strain relations of strain hardening metal, J. Appl. Mech., 21, 323–6.

    Google Scholar 

  • Besseling, J. F. (1958). Theory of elastic, plastic, and creep deformation of an initially isotropic material showing anisotropic strain hardening, creep recovery, and secondary creep, J. Appl. Mech., 25, 529–36.

    Google Scholar 

  • Chaboche, J. L. (1978). Sur l’utilisation des variables d’état pour la description cyclic and anisotropic behaviour of metals, Bull. Acad. Sci. Pol., 25, 33–42.

    Google Scholar 

  • Chaboche, J. L. (1978). Sur l’utilization des variables d’état.pour la description du comportement viscoplastique et de la rupture par endommagement, Proc. Symp. Franco-Polon., Rhéologie et Mécanique, Pol. Sci. Publ.

    Google Scholar 

  • Chaboche, J. L., Dang Van, K. and Cordier, G. (1979). Modelization of strain memory effect on the cyclic hardening of 316 stainless steel, Trans. 5th Conf, Struct. Mech. Reactor Techn., vol. L.

    Google Scholar 

  • Dafalias, Y. F. and Popov, E. P. (1975). A model of non-linearly hardening materials with complex loading, Acta Mech., 21, 173–92.

    Article  Google Scholar 

  • Eisenberg, M. A (1976). A generalization of plastic flow theory with application to cyclic hardening and softening phenomena, Trans. ASME, J. Eng. Mat. Techn., 97H, 221–8.

    Article  Google Scholar 

  • Eisenberg, M. A. and Phillips, A (1968). Gn non-linear kinematic hardening, Acta Mech., 5, 1–13.

    Article  Google Scholar 

  • Eisenberg, M. and Phillips, A. (1971). A theory of plasticity with non-coincident yield and loading surfaces, Acta Mech., 11, 247–60.

    Article  Google Scholar 

  • Halphen, B. and Nguyen, Q. S. (1975). Sur les matériaux standards généralisés, J Mécan., 14, 41–60.

    Google Scholar 

  • Hart, E. W. (1976). Constitutive relations for the non-elastic deformation of metals, J. Eng. Mat. Techn., 98, 193–203.

    Article  CAS  Google Scholar 

  • Haythornthwaite, R M. (1968). A more rational approach to strain hardening data. In Engineering Plasticity, J. Heyman and F. A Leckie (Eds), Cambridge Univ. Press.

    Google Scholar 

  • Hill, R (1967). The essential structure of constitutive laws for metal composites and polycrystals, J. Mech. Phys. Solids, 15, 79–95.

    Article  CAS  Google Scholar 

  • Ivlev, V. D. (1963). On a theory of composite media (in Russian), Dokl. Akad. Nauk SSSR, 8, 28–30.

    Google Scholar 

  • Iwan, W. D. (1967). On a class of models for the yielding behaviour of continuous and composite systems, J. Appl. Mech., 34, 612–17.

    Google Scholar 

  • Kadashevitch, Yu, I. and Novozhilov, V. V. (1959). Theory of plasticity accounting for residual stresses (in Russian), Prikl. Math. Mekh., 22, 104–8.

    Google Scholar 

  • Kafka, V. (1968). The general theory of isothermal elastic-plastic deformation of polycrystals based on an analysis of the microscopic state variables, ZA.M.M., 48, 265–82.

    Google Scholar 

  • Khazhinsky, G. M. (1975). Plastic deformation of metals (in Russian), Izv. Akad. Nauk SSSR, Mekh. TV. Tela, 1, 175–7.

    Google Scholar 

  • de Koning, A U. (1977). A continuum theory of time independent plasticity based on a volume fraction model, National Aerospace Lab. NLR, MP. 77017U, Amsterdam.

    Google Scholar 

  • Kratochvil, J. and Dillon, O. W. (1969). Thermodynamics of elastic-plastic materials as a theory with internal state variables, J. Appl. Phys., 40, 3207–18.

    Article  Google Scholar 

  • Krieg, R. D. (1975). A practical two-surface plasticity theory, J. Appl. Mech., 42, 641–6.

    Article  Google Scholar 

  • Krieg, R. D. (1977). Numerical integration of some unified plasticity-creep formulations, Proc. SMiRT-4 Conf., Vol. L, San Francisco.

    Google Scholar 

  • Kujawski, D. and Mróz, Z. (1980). A viscoplastic material model and its application to cyclic loading, Acta Mechanica, 36, 213–30.

    Article  Google Scholar 

  • Lagneborg, R. (1972). A modified recovery-creep model and its evaluation, Met. Sci. J., 6, 127–33.

    CAS  Google Scholar 

  • Lamba, H. S. and Sidebottom, O. M. (1978). Cyclic plasticity for non-proportional paths. Part 1: Cyclic hardening, erasure of memory and subsequent strain hardening experiments, Trans. ASME, J. Eng. Mat. Techn., 100, 96–103.

    Article  Google Scholar 

  • Lee, D. and Zaverl, F., Jr (1979). A description of history dependent plastic flow behaviour of anisotropic metals, Trans. ASME, J. Eng. Mat. Techn., 101, 59–67.

    Article  CAS  Google Scholar 

  • Lin, T. H. (1971). Physical theory of plasticity, Adv. Appl. Mech., 11, Academic Press.

    Google Scholar 

  • Malinin, N. N. and Khadjinsky, G. M. (1972). Theory of creep with anisotropic hardening, Int. J. Mech. Sci., 14, 235–46.

    Article  Google Scholar 

  • Mandel, J. (1971). Plasticité et Viscoplasticitè, CISM course nr 97, Springer- Verlag.

    Google Scholar 

  • Mandel, J. (1974). Thermodynamics and plasticity. In Foundations of Continuum Thermodynamics, J. J. Delgado Dominges, N. R Nina and J. H. Whitelaw, Macmillan Press, pp 283–304.

    Google Scholar 

  • Melan, E. (1938). Zur Plastizität des raumlichen Kontinuums, Ing. Arch., 116–26.

    Google Scholar 

  • Miller, A K. (1976). An inelastic constitutive model for monotonie cyclic, and creep deformation, Parts I and II, Trans. ASME, J. Eng. Mat. Techn., 98, 47–52.

    Article  Google Scholar 

  • Mitra, S. K. and McLean, D. (1966). Work hardening and recovery in creep, Proc. Roy. Soc., A295, 288–99.

    Article  CAS  Google Scholar 

  • Mróz, Z. (1967). On the description of anisotropic work-hardening, J. Mech. Phys. Solids, 15, 163–75.

    Article  Google Scholar 

  • Mróz, Z. (1969). An attempt to describe the behaviour of metals under cyclic loading using a more general work-hardening model, Acta Mech., 7, 199–212.

    Article  Google Scholar 

  • Mróz, Z. (1972). A description of work-hardening of metals with application to variable loading, Proc. Symp. Foundations of Plasticity, A. Sawczuk ( Ed. ), Noordhoff Int. Publ., pp 551–70.

    Google Scholar 

  • Mróz, Z. (1981). On generalized kinematic hardening rule with memory of maximal prestress, J. Méc. Appl, 5, 241–60.

    Google Scholar 

  • Mróz, Z. and Lind, N. C. (1975). Simplified theories of cyclic plasticity, Acta Mech., 22, 131–52.

    Article  Google Scholar 

  • Mróz, Z. and Trampczyński, W. A. (1984). On the creep hardening rule for metals with a memory of maximal prestress, Int. J. Solids Struct., 20, 467–86.

    Article  Google Scholar 

  • Mróz, Z., Shrivastava, H. P. and Dubey, R. N. (1976). A non-linear hardening model and its application to cyclic loading, 25, 51–61.

    Google Scholar 

  • Murakami, S. and Ohno, N. (1982). A constitutive equation for creep based on the concept of a creep hardening surface, Int. J. Solids Struct., 18, 597–609.

    Article  Google Scholar 

  • Orowan, E. (1946). The creep of metals, J. West. Scot. Iron Steel Inst., 54, 45–53.

    Google Scholar 

  • Ortiz, M. and Popov, E. P. (1983). Distortional hardening rules for metal Plasticity, J. Eng. Mech. Div., Proc. ASCE, 109 (EM4), 1042–57.

    Google Scholar 

  • Petersson, H. and Popov, E. P. (1977). Constitutive relations for generalized Loading, J. Eng. Mech. Div., Proc. ASCE, 103 (EM4), 611–27.

    Google Scholar 

  • Ponter, A.R.S. and Leckie, F. A. (1976). Constitutive relationship for the time-dependent deformation of metals, J. Eng. Mat. Techn. Proc. ASME, 98, 47–52.

    Article  Google Scholar 

  • Prager, W. (1956). A new method of analysing stress and strain in work-hardening plastic solids, J. Appl. Mech., 23, 493–6.

    Google Scholar 

  • Prager, W. (1966). Composite stress-strain relations for elastoplastic solids, Proc. IUTAM Symp. Irreversible Aspects of Continuum Mechanics, H. Parkus ( Ed. ), Springer-Verlag.

    Google Scholar 

  • Rice, J. R. (1971). Inelastic constitutive relations for solids: an internal variable theory and its application to metal elasticity, J. Mech. Phys. Solids, 19, 433–55.

    Article  Google Scholar 

  • Shrivastava, H. P., Mróz, Z. and Dubey, R. N. (1973). Yi§ld criterion and the hardening rule for a plastic solid, Z.A.M.M., 53, 625–33.

    Google Scholar 

  • Taylor, G. I. (1938). Plastic strain in metals, J. Inst. Metals, 62, 306–24.

    Google Scholar 

  • Vakulenko, A. A. (1961). On relations between stress and strain in inelastic media, Problems of Elasticity and Plasticity (in Russian), Vol. 1, Leningrad Univ.

    Google Scholar 

  • Valanis, K. C. and Lee, C. F. (1982). Some recent developments of the endochronic theory with applications, Nucl. Eng. Design, 69, 327–44.

    Article  Google Scholar 

  • Wells, C. H. and Paslay, P. R. (1969). A small strain plasticity theory for planar slip materials, J. Appl Mech., 36, 15–21.

    Google Scholar 

  • Zarka, J., Engel, J. J. and Inglebert, G. (1980). On a simplified inelastic analysis of structures, Nucl Eng. Design, 57, 333–68.

    Article  CAS  Google Scholar 

  • Ziegler, H. (1959). A modification of Prager’s hardening rule, Quart. Appl Math., 17, 55–60.

    Google Scholar 

  • Zienkiewicz, O. C., Nayak, G. C. and Owen, D. R. J. (1972). Composite and overlay models in numerical analysis of elasto-plastic continua, Proc. Intern. Symp. Foundations of Plasticity, A. Sawczuk ( Ed. ), Noordhoff Int Publ.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Elsevier Applied Science Publishers Ltd

About this chapter

Cite this chapter

Mróz, Z. (1986). Phenomenological Constitutive Models for Metals. In: Gittus, J., Zarka, J. (eds) Modelling Small Deformations of Polycrystals. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4181-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4181-6_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8357-7

  • Online ISBN: 978-94-009-4181-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics