Skip to main content

Quasi-Physical Modelling of the Plastic Behaviour of Polycrystals

  • Chapter

Abstract

The transition from single crystal to polycrystal rate-independent plasticity is investigated according to two distinct approaches. The first, which is based on experimental observations of the influence of grain boundaries and junctions on the plastic response of grains of a polycrystal, emphasizes the inhomogeneous character of the intragranular plastic strain field; consequently, the average plastic behaviour of a grain completely embedded within a polycrystalline aggregate does not reduce to that of an isolated single crystal Though this conclusion can hardly lead, at the moment, to a quantitative estimate of such a difference, several attempts at quasi-physical modelling of the plastic behaviour of polycrystals are reported. The general principles of the corresponding procedure are first analysed, with special attention to the ‘localization’ problem, which is concerned with the relationship between local and overall mechanical variables. Several models are then discussed, which have a space phase distribution independence as a common feature. Typical illustrations of the predictive ability of these models are reported, with special emphasis on the self-consistent method. This method is finally shown to provide a possible guide for the introduction of space distribution effects, through the definition of multi-site self-consistent schemes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Batdorf, S. B. and Budiansky, B. (1949). A mathematical theory of plasticity based on the concept of slip, NACA TN-1871.

    Google Scholar 

  • Berveiller, M. and Zaoui, A. (1979). An extension of the self-consistent scheme to plastically flowing polycrystals, J. Mech. Phys. Solids, 26, 325.

    Article  Google Scholar 

  • Berveiller, M. and Zaoui, A. (1981). A simplified self-consistent scheme for the plasticity of two-phase metals, Res. Mech. Lett., 1, 119.

    Google Scholar 

  • Berveiller, M. and Zaoui, A. (1982). Etude de l’anisotropie élastique, plastique et géométrique dans les polycristeaux métalliques. In Mechanical Behaviour of Anisotropic Solids, J. P. Boehler (Ed.), CNRS, and Martinus Nyhoff, The Hague, p. 335.

    Google Scholar 

  • Berveiller, M. and Zaoui, A (1983). Modelling of the plasticity and the texture development of two-phase metals. In Deformation of Multi-phase and Particle- containing Materials, J. B. Bilde-Sorensen, N. Hansen, A. Horsewell, T. Leffers and H. Lilholt (Eds), Rise National Laboratory, Roskilde, Denmark, p. 153.

    Google Scholar 

  • Berveiller, M. and Zaoui, A. (1984). Modelling of the plastic behaviour of inhomogeneous media, J. Eng. Mat. Tech., 106, 295.

    Article  CAS  Google Scholar 

  • Berveiller, M., Hihi, A. and Zaoui, A. (1981). Self-consistent schemes for polycrystalline and multiplase materials plasticity. In Deformation of Polycrystals: Mechanisms and Microstructures, N. Hansen, A. Horsewell, T. Leffers and H. Lilholt (Eds), Riso National Laboratory, Roskilde, Denmark, p. 145.

    Google Scholar 

  • Bishop, J. F. W. and Hill, R.. (1981). Test of mechanical interaction models between polycrystal grains by means of local strain measurements. In Deformation of Polycrystals: Mechanisms and Microstructures, N. Hansen, A. Horsewell, T. Leffers and H. Lilholt (Eds), Riso National Laboratory, Roskilde, Denmark, p. 157.

    Google Scholar 

  • Budiansky, B. AND Wu, T. T. (1962). Theoretical Prediction of Plastic Strains Of Polycrystals, Proc. 4th US Nat. Congr. Appl. Mech., p. 1175.

    Google Scholar 

  • Chen, I. W. and Argon, A. S. (1979). Steady state power law creep in heterogeneous alloys with coarse microstructures, Acta Metall., 27, 785.

    Article  CAS  Google Scholar 

  • Dederichs, P. H. and Zeller, R (1973). Variational treatment of the elastic constants of disordered materials, Z. Physik, 259, 103.

    Article  CAS  Google Scholar 

  • Eshelby, J. D . (1957). The determination of the elastic field of an ellipsoidal inclusion and related problems, Proc. Roy. Soc. (London), A241, 376.

    Google Scholar 

  • Eshelby, J. D . (1961). Elastic inclusions and inhomogeneities. In Progress in Solids Mechanics, Vol. II, I. N. Sneddon and R Hill (Eds), North-Holland, Amsterdam, p. 87.

    Google Scholar 

  • Franciosi, P. (1978). Plasticité à froids des monocristaux cfc: étude du durcissement latent, spec, thesis, Université Paris.

    Google Scholar 

  • Franciosi, P. (1984). Etude théorique et expérimentale du comportement élastoplastique des monocristaux métalliques se déformant par glissement: modélisation pour un chargement complexe quasi statique, doctoral thesis, Université Paris-Nord, Villetaneuse, France.

    Google Scholar 

  • Franciosi, P. and Zaoui, A (1982a). Multislip in fee crystals: a theoretical approach compared with experimental data, Acta Metall, 30, 1627.

    Article  Google Scholar 

  • Franciosi, P. and Zaoui, A (1982b). Multislip tests on copper crystals: a junction hardening effect, Acta Metall., 30, 2141.

    Article  Google Scholar 

  • Franciosi, P., Berveiller, M. and Zaoui, A (1980). Latent hardening in copper and aluminium single crystals, Acta Metall, 28, 273.

    Article  CAS  Google Scholar 

  • Havner, K S. (1982). The theory of finite plastic deformation of crystalline solids. In Mechanics of Solids, the Rodney Hill 60th Anniversary Volume, H. G. Hopkins and M. J. Sewell (Eds), Pergamon Press, Oxford, p. 265.

    Google Scholar 

  • Havner, K S. and Shalaby, A H. (1977). A simple mathematical theory of finite distortional latent hardening in single crystals, Proc. Roy. Soc. ( London ), A358, 47.

    Google Scholar 

  • Hershey, A V. (1954). The elasticity of an isotropic aggregate of anisotropic cubic crystals,J. Appl. Mech., 21, 236.

    CAS  Google Scholar 

  • Hihi, A, Berveiller, M. and Zaoui, A (1985). Une nouvelle formulation autocohérente de la plasticité des polycristaux métalliques, J. Mech. Theor. Appl, 4, 201.

    Article  Google Scholar 

  • Hill, R . (1965). Continuum micro-mechanics of elastoplastic polycrystals, J. Mech. Phys. Solids, 13, 89.

    Article  CAS  Google Scholar 

  • Hill, R. (1966). Generalized constitutive relations for incremental deformation of metal crystals by multislip, J. Mech. Phys. Solids, 14, 95.

    Article  CAS  Google Scholar 

  • Honneff, M. and Mecking, H. (1978). A method for the determination of the active slip systems and orientation changes during single crystal deformation. In Textures of Materials, G. Gottstein and K. Lücke (Eds), Springer, p. 265.

    Google Scholar 

  • Hutchinson, J. W. (1970). Elastic-plastic behaviour of polycrystalline metals and composites, Proc. Roy. Soc. ( London ), A319, 247.

    Google Scholar 

  • Iwakuma, T. and Nemat-Nasser, S. (1984). Finite elastic-plastic deformation of polycrystalline metals, Proc. Roy. Soc. (London), A394, 87.

    Article  CAS  Google Scholar 

  • Jackson, P. J. and Bazinski, Z. S. (1967). Latent hardening and the flow stress in copper single crystals, Can. J. Phys., 45, 707.

    Article  CAS  Google Scholar 

  • Kocks, U. F. (1964). Latent hardening and secondary slip in aluminium and silver, Trans. Met. Soc. AIME, 230, 1160.

    Google Scholar 

  • Kröner, E. (1958). Kontinuumstheorie der Versetzungen und Eigenspannungen, Springer-Verlag, Berlin.

    Google Scholar 

  • Kröner, E. (1961). Zur plastischen Verformung des Vielkristalls, Acta Metall, 9, 155.

    Article  Google Scholar 

  • Leffers, T. (1981). Microstructures and mechanisms of polycrystal deformation at low temperature. In Deformation of Poly crystals: Mechanisms and Microstructures, N. Hansen, A Horsewell, T. Leffers and H. Lilholt (Eds), Riso National Laboratory, Roskilde, Denmark, p. 55.

    Google Scholar 

  • Lin, T. H. (1957). Analysis of elastic and plastic strains of a fee crystal, J. Mech. Phys. Solids, 5, 143.

    Article  CAS  Google Scholar 

  • Livingston, J. D. and Chalmers, B. (1957). Multiple slip in bicrystal deformation, Acta Metall, 5, 322.

    Article  CAS  Google Scholar 

  • Mandel, J. (1965). Généralisation de la théorie de plasticité de W. T. Koiter, Jm. J. Solids Struct., 1, 273.

    Google Scholar 

  • Mussot, P., Rey, C. and Zaoui, A (1985). Grain boundary sliding and strain compatibility, Res. Mech., 14, 69.

    Google Scholar 

  • Nakada, Y. and Keh, A S. (1966). Latent hardening in iron single crystals, Acta Metall, 14, 961.

    Article  CAS  Google Scholar 

  • Peirce, D., Asaro, R. J. and Needleman, A. (1982). An analysis of non-uniform and localized deformation in ductile single crystals, Acta Metall, 30, 1087.

    Article  CAS  Google Scholar 

  • Rey, C. (1980). Contribution â l’étude de l’influence des interfaces sur la plasticité à froid des métaux purs, doctoral thesis, Université Paris-Nord, Villetaneuse, France.

    Google Scholar 

  • Rey, C. and Zaoui, A. (1980). Slip heterogeneities in deformed aluminium bicrystals, Acta Metall, 28, 687.

    Article  CAS  Google Scholar 

  • Rey, C. and Zaoui, A. (1982). Grain boundary effects in deformed bicrystals, Acta Metall, 30, 523.

    Article  CAS  Google Scholar 

  • Rey, C., Mussot, P., Vroux, A H. and Zaoui, A (1985). Effects of interfaces on the plastic behaviour of metallic aggregates, J. Phys., 46 C4, 645.

    Google Scholar 

  • Sachs, G. (1928). Zur Ableitung einer Fliessbedingung, Z VDI, 72, 734.

    Google Scholar 

  • Taylor, G. I. (1934). The mechanism of plastic deformation of crystals, Proc. Roy. Soc. ( London ), A145, 362.

    Google Scholar 

  • Taylor, G. I. (1938). Plastic strain in metals, J. Inst. Metals, 62, 307.

    Google Scholar 

  • Voigt, W . (1889). Über die Beziehung zwischen den beiden Elastizitätskonstantenisotroper Körper, Wied. Ann., 38, 573.

    Google Scholar 

  • Weng, G. J. (1979). Kinematic hardening rule in single crystals, Int. J. Solids Struct., 15, 861.

    Article  Google Scholar 

  • Weng, G. J. (1983). A micromechanical theory of grain-size dependence in metal plasticity, J. Mech. Phys. Solids, 31, 193.

    Article  Google Scholar 

  • Zaoui, A (1979). Aspects fondamentaux de la plasticité des polycristaux métalliques. In Dislocations et Déformation Plastique, P. Groh, L. P. Kubin and J. L. Martin (Eds), Editions de Physique, Paris.

    Google Scholar 

  • Zaoui, A (1984). Macroscopic plastic behaviour of microinhomogeneous materials. In Plasticity Today, A Sawczuk and G. Bianchi (Eds), Elsevier Applied Science, London, p. 451.

    Google Scholar 

  • Zarka, J. (1973). Etude du comportement des monocristaux métalliques: application à la traction du monocristal cfc, J. Mècan., 12, 275.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Elsevier Applied Science Publishers Ltd

About this chapter

Cite this chapter

Zaoui, A. (1986). Quasi-Physical Modelling of the Plastic Behaviour of Polycrystals. In: Gittus, J., Zarka, J. (eds) Modelling Small Deformations of Polycrystals. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4181-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4181-6_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8357-7

  • Online ISBN: 978-94-009-4181-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics