Skip to main content

Abstract

A review of principal results concerning the quasi-static response of an elastic- plastic or elastic-viscoplastic structure undergoing infinitesimal transformation is given. It is concerned principally with the perfect plastic model and with a straightforward generalization denoted as the generalized standard model Both of these models are based upon the classical assumptions of normality and convexity. Firstly, the rate problem is recalled and associated minimum principles are formulated. Secondly, a global description of the evolution is introduced and global results are derived such as uniqueness and existence theorems. Elastic and plastic shake-down theorems are then presented from an asymptotic analysis of the response of the structure under cyclic or periodic loading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brézis, H. (1973). Opérateurs Maximaux Monotones et Semi-groupes Nonlinêaires dans les Espaces de Hilbert, North-Holland, Amsterdam.

    Google Scholar 

  • Débordes, O. and Nayroles, B. (1976). Sur la théorie et le calcul à l’adaptation des structures élastoplastiques. J. Mècan., 15, 1, 1–54.

    Google Scholar 

  • Drucker, D. C. (1964). On the postulate of stability of material in the mechanics of continua, J. Mècan., 3, 235–50.

    Google Scholar 

  • Geiringer, H. (1938). Fondements mathématiques de la théorie des corps plastiques isotropes, Mëm. Sei. Math., 86.

    Google Scholar 

  • Greenberg, G. (1949). Complementary minimum principles for an elastic plastic material, Quart. Appi. Math., 7, 85.

    Google Scholar 

  • Halphen, B. (1978). Problèmes quasi-statiques en viscoplasticité. Thèse, Paris.

    Google Scholar 

  • Halphen, B. and Nguyen, Q. S. (1975). Sur les matériaux standards généralisés, J. Mècan., 14, 1, 21–39.

    Google Scholar 

  • Hill, R. (1950). Mathematical Theory of Plasticity, Oxford Ed.

    Google Scholar 

  • Hill, R. (1958). A general theory of uniqueness and stability in elastic plastic Solids, J. Mech. Phys. Solids, 6, 236–49.

    Article  Google Scholar 

  • Hutchinson, J. (1973). Plastic buckling, Adv. Appl. Mech., 14, 67–144.

    Article  Google Scholar 

  • Koiter, W. T. (1960). General theory for elastic plastic solids. Progress in Solid Mechanics, Vol. 4, North-Holland, Amsterdam, p. 165.

    Google Scholar 

  • Lee, E. H. (1969). Elastic-plastic deformation at finite strain, J. Appl Mech., 36, 1–6.

    Google Scholar 

  • Maier, G. (1972). A shake-down matrix theory allowing for work-hardening and second order geometric effect Foundations of Plasticity, Varsovie.

    Google Scholar 

  • Mandel, J. (1942). Equilibre par trasches planes des solides à la limite d’écoulement. Thèse, Paris.

    Google Scholar 

  • Mandel, J. (1961). Cours de Mécanique des Milieux Continus, Gauthier-Villars, Paris.

    Google Scholar 

  • Mandel, J. (1971). Plasticité et viscoplasticité. CISM Course.

    Google Scholar 

  • Mandel, J. (1972). Note sur l’application du critère de Tresca au problème de la flexion circulaire d’un cylindre élastoplastique, Arch. Mech. Stos., 24, 863–72.

    Google Scholar 

  • Melan, E. (1936). Theorie statisch unbestimmter Systeme aus ideal-plastichen Baustoff, Sitz. Ber. AK. Wiss. Wien, IIa, 145–95.

    Google Scholar 

  • Moreau, J. J. (1973). On unilateral constraints, friction and plasticity, CIME, Bressarone.

    Google Scholar 

  • Nayroles, B. (1977). Tendances récentes et perpectives à moyen terme en élastoplasticité asymptotique des constructions, 3ème Congrès Français de mécanique, Grenoble.

    Google Scholar 

  • Nguyen, Q. S. (1973). Contribution à la théorie macroscopique de l’élastoplasticité avec écrouissage, Thèse, Paris.

    Google Scholar 

  • Prager, W. (1937). Mécanique des solides isotropes au-delà du domaine élastique. Mëm. Sei. Math.

    Google Scholar 

  • Prager, W. and Hodge, P. G. (1951). Theory of Perfectly Plastic Solids, Dover, New York.

    Google Scholar 

  • Rice, J. (1971). Inelastic constitutive relations for solids: an internai variable theory and its applications to metal plasticity, J. Mech. Phys. Solids, 19, 433–55.

    Article  Google Scholar 

  • Suquet, P. (1978). Existence et régularité des solutions des équations de la plasticité parfaite, Thèse, Paris.

    Google Scholar 

  • Zarka, J. and Casier, J. (1979). Elastic-plastic response of a structure to cyclic loading: practical rules, Plasticity Today, 6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Elsevier Applied Science Publishers Ltd

About this chapter

Cite this chapter

Son, N.Q. (1986). Basic Theorems of Elastoplasticity. In: Gittus, J., Zarka, J. (eds) Modelling Small Deformations of Polycrystals. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4181-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4181-6_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8357-7

  • Online ISBN: 978-94-009-4181-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics