Skip to main content
  • 350 Accesses

Abstract

The usefulness of a unified pharmacokinetic model for the chronic testing of drug residues is described. The model was very suitable for the disposition and metabolism rate of methylch1oroform (MC) in humans, rats and mice, at various exposure levels and with two different routes of administration. The physiological parameters fed into the model take account of old and young animals. The model could provide more reliable estimations of health hazards for the chemicals in our environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agin. G.L. and Blau. G.E. (1982). Application of DACSL (Dow Advanced Continuous Simulation Language) to the design and application of chemical reactor systems. Amer. Inst. Chem. Eng. Symp. Ser. No. 214, 78: 108–118.

    Google Scholar 

  2. Andersen. M.E.. Gargas. M.L. and Ramsey, J.C. (1984). Inhalation pharmacokinetics: evaluating systemic extraction, total in vivo metabolism, and the time course of enzyme induction for inhaled styrene in rats based on arterial blood: inhaled air concentration ratios 1. Toxicol. Appl. Pharmacol. 73: 175–187.

    Article  Google Scholar 

  3. Anderson. M.W., Hoel, D.G. and Kaplan, N.L. (1980). A general scheme for the incorporation of pharmacokinetics in low-dose risk estimation for chemical carcinogenesis: Example - Vinyl Chloride. Toxicol. Appl. Pharmacol. 55: 154.

    Article  PubMed  CAS  Google Scholar 

  4. Caster, W.O., Poncelet, J., Simon, A.B. and Armstrong, W.D. (1956). Tissue weights of the rat. I. Normal values determined by dissection and chemical methods. Proc. Soc. Exp. Biol. Ned. 91: 122–126.

    CAS  Google Scholar 

  5. Davis, N.R. and Mapleson, W.W. (1981). Structure and quantification of a physiological model of the distribution of injected agents and inhaled anaesthetics. Br. Journal Anaesth. 53: 399–405.

    Article  CAS  Google Scholar 

  6. Gehring, P.J. (1968). Hepatotoxic potency of various chlorinated hydrocarbon vapors relative to their narcotic and lethal potencies in mice. Toxicol. Appl. Pharmacol. 13: 287–298.

    Article  PubMed  CAS  Google Scholar 

  7. Gehring. P.J. and Blau, G.E. (1977). Mechanisms of carcinogenesis dose response. J. Env. Path. Toxicol. 1: 163–179.

    CAS  Google Scholar 

  8. International Commission on Radiation Protection (1975). Report of the task group on reference man. W.S. Snyder et al. (eds). ICRP Publication 23. New York: Pergamon Press.

    Google Scholar 

  9. Nolan, R.J., Freshour, N.L., Rick, D.L., McCarty, L.P. and Saunders, J.H. (1984). Kinetics and metabolism of inhaled methyl chloroform (1,1,1-trichloroethane) in male volunteers. Fund. Appl. Toxicol. 4: 654–662.

    Article  CAS  Google Scholar 

  10. Ramsey. J.C. and Andersen, M.E. (1984). A physiologically based description of the inhalation pharmacokinetics of styrene in rats and humans. Toxicol. APPI. Pharmacol. 73: 159–175.

    Article  CAS  Google Scholar 

  11. Reitz, R.H., Schumann, A.M., Osborne, D.W. and Nolan, R.J. Pharmacokinetics of 1.1.1-trichloroethane (MC) in humans, rats and mice after inhalation or drinking water administration. The Toxicologist 5: 110.

    Google Scholar 

  12. Schumann, A.M., Fox, T.R. and Watanabe, P.G. (1982). [14C]methyl chloroform (1.1.1-trichloroethane): Pharmacokinetics in rats and mice following inhalation exposure. Toxicol. APPI. Pharmacol. 62: 390–401.

    Google Scholar 

  13. Schumann, A.M., Fox, T.R. and Watanabe, P.G. (1982). A comparison of the fate of inhaled methyl chloroform (1.1.1-trichloroethane) following single or repeated exposure in rats and mice. Fundam. Appl. Toxicol. 2:27–32.

    Google Scholar 

  14. Watanabe, P.G., Zemple, J.A., Pegg, D.Y. and Gehring, P.J. (1978). Hepatic macromolecular binding following exposure to vinyl chloride. Toxicol. Appl. Pharmacol. 44: 571–579.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 MTP Press Limited

About this chapter

Cite this chapter

Verschuuren, H.G., Reitz, R.H. (1986). The use of pharmacokinetics in chronic toxicity testing. In: Van Miert, A.S.J.P.A.M., Bogaert, M.G., Debackere, M. (eds) Comparative Veterinary Pharmacology, Toxicology and Theraphy. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4153-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4153-3_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8343-0

  • Online ISBN: 978-94-009-4153-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics