Skip to main content

Abstract

In species-dependent pharmacokinetics there are three main variables: the structure of the drug, the mechanism and route of metabolism. and renal excretion. When the drug is administered orally, the structure and characteristics of the gastrointestinal tract are an additional factor which may dominate the overall pharmacokinetic behavior. Sulphonamides are metabolized by acetylation-deacetylation reactions and by hydroxylation. Hydroxylation is possible at different positions in the N1-substituent group. The ratio between acetylation and hydroxylation depends on the structure of the sulphonamide and the species. Renal function, as expressed by inulin or creatinine clearance, is almost independent of the species and related to the body weight. The renal excretion mechanisms of sulphonamides and their metabolites are governed by the molecular structure and kidney architecture, but not by animal species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. De Backer, P. (1986). Comparative neonatal Pharmacokinetics. In: Van Miert, A.S.J.P.A.M., Bogaert, M.G. and Debackere, M. (eds). Comparative Veterinary Pharmacology, Toxicology and Therapy» Proc. 3rd EAVPT Conqress, Part II. Invited Lectures. Lancaster: MTP Press.

    Google Scholar 

  2. Edwards, N.A. (1975). Scaling of renal functions in mammals. Comp. Biochem. Physiol. 52A: 63–66.

    Article  CAS  Google Scholar 

  3. Hansson. K.-A. and Sandberg, M. (1973). Determination of sulphapyridine and its metabolites in biological materials after administration of salicylsulphapyridine. Acta Pharm. Suecica 10: 87–92.

    CAS  Google Scholar 

  4. Hekster. Y.A. and Vree, T.B. (1982). Clinical pharmacokinetics of su1phonamides and their N4-acetyl derivatives. Antibiot. Chemother. 31: 22–118.

    PubMed  CAS  Google Scholar 

  5. Nouws, J.F.M., Vree, T.B., Tijhuis, M.U. and Baakman, n. (1983). Effect of age on the acetylation and deacetylation reactions of sulfadimidine and N4-acetylsulfadimidine in calves. J. Vet. Pharmacol. Ther. 6: 13–22.

    Article  PubMed  CAS  Google Scholar 

  6. Nouws, J.P.M., Vree, T.B., Breukink, H.J., Baakman, M., Driessens, F. and Smulders, A. (1985). Dose dependent disposition of sulfadimidine, its N4-acetyl-, and its hydroxy metabolites in plasma and milk of dairy cows. Vet. Q. 7: 177–186.

    PubMed  CAS  Google Scholar 

  7. Nouws. J.P.M., Vree, T.B., Baakman, M., Driessens. P., Breukink, H.J. and Mevius, D. (1986). Age and dosage dependency in the plasma disposition and the renal clearance of sulfadimidine and its N4-acetyl and hydroxy metabolites in calves and cows. Am. J. Vet. Res. 47: 642–649.

    PubMed  CAS  Google Scholar 

  8. Scudi. J.V. (1944). Excretion of metabolic products of sulfapyridine in the dog. Proc. Soc. Exp. Biol. Med. 55: 197–199.

    CAS  Google Scholar 

  9. Scudi. J.V. and Childress, S.J. (1956). Constitution of the hydroxysulfapyridine isolated from dog urine. J. Biol. Chem. 218: 587–593.

    PubMed  CAS  Google Scholar 

  10. Schröder, H. and Schröder, B. (1973). Isolation and excretion of a hydroxylated metabolite of sulphapyridine from human urine. Acta Pharm. Suecica 10: 263–268.

    Google Scholar 

  11. Vree, T.B. and Vree, J.B. (1983). Acetylation of sulphamethoxazol e by fresh water turtles Pseudemys scripta elegans. J. Vet. Pharmacol. Ther. 6: 237–240.

    Article  PubMed  CAS  Google Scholar 

  12. Vree, T.B. and Vree, M.L. (1984). Acetylation of sulphamethoxazol e by the snail Cepaea hortensis. J. Vet. Pharmacol. Ther. 7: 239–241.

    Article  PubMed  CAS  Google Scholar 

  13. Vree, T.B., Tijhuis, fl.U., Nouws, J.P.M. and Hekster, Y.A. (1984). Isolation and identification of 4-hydroxysulfamerazine and preliminary studies on its pharmacokinetics in dogs. Pharm. Ueekbl. Sei. Ed. 6: 80-87.

    CAS  Google Scholar 

  14. Vree, T.B., Hekster, Y.A. and Tijhuis, M.W. (1985). Metabolism of sulfonamides. Antibiot. Chemother. 34: 5–65.

    Google Scholar 

  15. Vree, T.B., Hekster, Y.A., Nouws, J.P.M. and Dorresteijn, G.M. (1985). Pharmacokinetics of sulfonamides in animals. Antibiot. Chemother. 34: 130–170.

    Google Scholar 

  16. Vree. T.B. and Hekster, Y.A. (1985). Renal excretion of sulfonamides. Antibiot. Chemother. 34: 66–121.

    Google Scholar 

  17. Wood, J.H. and Leonard, T.W. (1983). Kinetic implications of drug resorption from the bladder. Drug Metab. Rev. 14: 407–423.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 MTP Press Limited

About this chapter

Cite this chapter

Vree, T.B., Nouws, J.F.M., Hekster, Y.A. (1986). Comparative pharmacokinetic studies of sulphonamides. In: Van Miert, A.S.J.P.A.M., Bogaert, M.G., Debackere, M. (eds) Comparative Veterinary Pharmacology, Toxicology and Theraphy. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4153-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4153-3_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8343-0

  • Online ISBN: 978-94-009-4153-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics