Skip to main content

The accuracy of RNA synthesis

  • Chapter
Book cover Accuracy in Molecular Processes

Abstract

For the normal metabolism of cells it is essential to transfer the genetic information contained in a DNA sequence into an RNA molecule. In order for the information to be faithfully expressed, the DNA sequence must be accurately transcribed and the primary RNA product molecule must be correctly processed and modified in order to produce a tRNA, mRNA, rRNA or other mature RNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarwal, S. S., Dube, D. K. and Loeb, L. A. (1979) On the fidelity of DNA replication: accuracy of Escherichia coli DNA polymerase I. J. Biol. Chem., 254, 101–106.

    Google Scholar 

  • Agris, P. F. and Soil, D. (1977) The modified nucleosides in transfer RNA. In Nucleic Acid-Protein Recognition (ed. H. J. Vogel ), Academic Press, New York, pp. 321–344.

    Google Scholar 

  • Altman, S. (1981) Transfer RNA processing enzymes. Cell, 23, 3–4.

    Article  Google Scholar 

  • Awedimento, U. E., Vogeli, G., Yamada, Y., Maizel, J. V., Pasten, I. and deCombrugghe, B. (1980) Correlation between splicing sites within an intron and their sequence complementarity with U1 RNA. Cell, 21, 689–696.

    Article  Google Scholar 

  • Baker, C. C. and Ziff, E. B. (1981) Promoters and heterogeneous 5′ termini of the messenger RNAs of adenovirus serotype 2. J. Mol. Biol., 149, 189–221.

    Article  Google Scholar 

  • Bass, I. A. and Polonsky, Jr, S. (1974) On the fidelity of in vitro polynucleotide synthesis by E. coli RNA polymerase. FEBS Lett., 48, 306–309.

    Google Scholar 

  • Batschelet, E., Domingo, E. and Weissmann, C. (1976) The proportion of revertant and mutant phage in a growing population, as a function of mutation and growth rate. Gene, 1, 27–32.

    Article  Google Scholar 

  • Berget, S. M. (1984) Are U4 small nuclear ribonucleoproteins involved in poly- adenylation? Nature, 309, 179–181.

    Article  Google Scholar 

  • Bertrand, Kl, Korn, L. J., Lee, F. and Yanofsky, C. (1977) The attenuator of the tryptophan operon of Escherichia coli. Heterogeneous 3′-OH termini in vivo and deletion mapping of functions. J. Mol Biol., 117, 227–247.

    Article  Google Scholar 

  • Bick, M. D. (1975) Misincorporation of GTP during transcription of poly dAT-dAT and poly dABU-dABU. Nucl. Acids Res., 2, 1513–1523.

    Article  Google Scholar 

  • Bogenhagen, D. F. and Brown, D. D. (1981) Nucleotide sequences in Xenopus 5S DNA required for transcription termination. Cell, 24, 261–270.

    Article  Google Scholar 

  • Bouadloun, F., Donner, D. and Kurland, C. G. (1983) Codon-specificmissense errors in vivo. EMBO J., 2, 1351–1356.

    Google Scholar 

  • Busslinger, M., Moschonas, N. and Flavell, R. A. (1981) β+ Thalassemia: Aberrant splicing results from a single point mutation in an intron. Cell, 27, 289–298.

    Google Scholar 

  • Carpousis, A. J., Stefano, J. E. and Gralla, J. D. (1982) 5′ nucleotide heterogeneity and altered initiation of transcription at mutant lac promoters. J. Mol. Biol., 157, 619–633.

    Google Scholar 

  • Chamberlain, M. and Berg, P. (1964) Mechanism of RNA polymerase action: Characterization of the DNA-dependent synthesis of poly adenylic acid. J. Mol. Biol., 8, 708–726.

    Article  Google Scholar 

  • Contreras, R. and Fiers, W. (1981) Initiation of transcription by RNA polymerase II in permeable, SV40-infected or noninfected, CV1 cells; evidence for multiple promoters of SV40 late transcription. Nucl. Acids Res., 9, 215–236.

    Article  Google Scholar 

  • Cozzarelli, N. R., Gerrard, S. P., Schiissel, M., Brown, D. D. and Bogenhagen, D. F. (1983) Purified RNA polymerase III accurately and efficiently terminates tran-scription of 5S RNA genes. Cell, 34, 829–835.

    Article  Google Scholar 

  • Davidson, E. H. and Britten, R. J. (1979) Regulation of gene expression: Possible role of repetitive sequences. Science, 204, 1052–1059.

    Article  Google Scholar 

  • Denis, H. and Wegnez, M. (1973) Recherche biochimiques sur l’oogenèse. 7. Synthèse et maturation du RNA 5S dans les petit oocytes de Xenopus laevis. (Biochemical research on oogenesis. 7. Synthesis and maturation of 5S RNA in the small oöcytes of Xenopus laevis.) Biochimie, 55, 1137–1151.

    Article  Google Scholar 

  • Domingo, E., Flavell, R. A. and Weissmann, C. (1976) In vitro site-directed mutagenesis: Generation and properties of and infectious extracistronic mutant of bacteriophage Qß. Gene, 1, 3–25.

    Google Scholar 

  • Donaldson, D. S., McNab, A. R., Rovera, G. and Curtis, P. J. (1982) Nuclear precursor molecules of the two β-globin mRNAs in Friend erythroleukemia cells. J. Biol. Chem., 257, 8655–8660.

    Google Scholar 

  • Edelmann, P. and Gallant, J. (1977) Mistranslation in E. coli. Cell, 10, 131–137.

    Google Scholar 

  • Ellis, N. and Gallant, J. (1982) An estimate of the global error frequency in translation. Mol. Gen. Genet., 188, 169–172.

    Article  Google Scholar 

  • Farnham, P. J. and Platt, T. (1980) A model for transcription termination suggested by studies on the trp attenuator in vitro using base analogs. Cell, 20, 739–748.

    Article  Google Scholar 

  • Felber, B. K., Orkin, S. H. and Hamer, D. H. (1982) Abnormal RNA splicing causes one form of a thalassemia. Cell, 29, 895–902.

    Article  Google Scholar 

  • Fitzgerald, M. and Shenk, T. (1981) The sequence 5′-AAUAAA-3′ forms part of the recognition site for polyadenylation of late SV40 mRNAs. Cell, 24, 251–260.

    Article  Google Scholar 

  • Fluck, M. M. and Epstein, R. H. (1980) Isolation and characterization of context mutations affecting the supressibility of nonsense mutations. Mol. Gen. Genet., 177, 615–627.

    Google Scholar 

  • Fluck, M. M., Salser, W. and Epstein, R. H. (1977) The influence of the reading context upon the suppression of nonsense codons. Mol. Gen. Genet., 151, 137–149.

    Article  Google Scholar 

  • Ford, J. P. and Hsu, M. T. (1978) Transcription pattern of in vivo labeled late SV40 RNA. J. Virol., 28, 795–801.

    Google Scholar 

  • Fraser, N. W. and Hsu, M.-T. (1980) Mapping of the 3′ terminus of the large late Ad-2 transcript by electron microscopy. Virology, 103, 514–516.

    Article  Google Scholar 

  • Fraser, N. W., Nevins, J. R., Ziff, E. and Darnell, J. E. (1979) The major late adenovirus type-2 transcription unit: Termination is downstream from the last poly (A) site. J. Mol. Biol., 129, 643–656.

    Article  Google Scholar 

  • Fukumaki, Y., Ghosh, P. K., Benz, E. J., Reddy, V. B., Lebowitz, P., Forget, B. G. and Weissman, S. M. (1982). Abnormally spliced messenger RNA in erythroid cells from patients with β+ thalassemia and monkey cells expressing a cloned β+-thalassemic gene. Cell, 28, 585–593.

    Article  Google Scholar 

  • Gidoni, D., Kahana, C., Canaani, D. and Groner, Y. (1981) Specific in vitro initiation of transcription of simian virus 40 early and late genes occurs at the various cap nucleotides including cytidine. Proc. Natl Acad. Sci. USA, 78, 2174–2178.

    Article  Google Scholar 

  • Goldsmith, M. E., Humphries, R. K., Ley, T., Cline, A., Kan tor, J. A. and Nienhuis, A. W. (1983) ‘Silent’ nucleotide substitution in a β+-thalassemia globin gene activates splice site in coding sequence RNA. Proc. Natl Acad. Sci. USA, 80, 2318–2322.

    Google Scholar 

  • Gurdon, J. B. and Brown, D. D. (1978) The transcription of 5S DNA injected into Xenopus laevis oocytes. Develop. Biol., 67, 346–356.

    Google Scholar 

  • Hagenbiichle, O. and Schibler, U. (1981) Mouse β-globin and adenovirus-2 major late transcripts are initiated at the cap site in vitro. Proc. Natl Acad. Sci. USA, 78, 2283–2286.

    Article  Google Scholar 

  • Higgs, D. R., Goodbourn, S. E. Y., Lamb, J., Clegg, J. D. and Weatherall, D. J. (1983) a-Thalassaemia caused by a polyadenylation signal mutation. Nature, 306, 398–400.

    Google Scholar 

  • Hofer, E. and Darnell, J. E. (1981) The primary transcription unit of the mouse β-major globin gene. Cell, 23, 585–593.

    Article  Google Scholar 

  • Hofer, E., Hofer-Warbinek, R. and Darnell, J. E. (1982) Globin RNA transcription: a possible termination site and demonstration of transcriptional control correlated with altered chromatin structure. Cell, 29, 887–893.

    Article  Google Scholar 

  • Holmes, W. M., Piatt, T. and Rosenberg, M. (1983) Termination of transcription in E. coli. Cell, 32, 1029–1032.

    Google Scholar 

  • Hopfield, J. J. (1974) Kinetic proofreading: A new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl Acad. Sci. USA, 71, 4135–4139.

    Article  Google Scholar 

  • Johnston, T. C., Borgia, P. T. and Parker, J. (1984) Codon specificity of starvation induced misreading. Mol. Gen. Genet., 195, 459–465.

    Article  Google Scholar 

  • King, C. R. and Piatigorsky, J. (1984) Alternative splicing of aA-crystallin RNA: structural and quantitative analyses of the mRNAs for the OLAT- and aAins-cry stall in polypeptides. Biol. Chem., 259, 1822–1826.

    Google Scholar 

  • Krainer, A. R., Maniatis, T., Ruskin, B. and Green, M. R. (1984) Normal and mutant human β-globin pre-mRNAs are faithfully and efficiently spliced in vitro. Cell, 36, 993–1005.

    Google Scholar 

  • Krämer, A., Keller, W., Appel, B. and Lührmann, R. (1984) The 5′ terminus of the RNA moiety of U1 small nuclear ribonucleoprotein particles is required for the splicing of messenger RNA precursors. Cell, 38, 299–307.

    Article  Google Scholar 

  • Krieg, P. A. and Melton, D. A. (1984) Formation of the 3′ end of histone mRNA by post-transcriptional processing. Nature, 308, 203–206.

    Article  Google Scholar 

  • Kröger, M. and Singer, B. (1979) Ambiguity and transcriptional errors as a result of methylation of N-l of purines and N-3 of pyrimidines. Biochemistry, 18, 3493–3500.

    Article  Google Scholar 

  • Kühne, T., Wieringa, B., Reiser, J. and Weissmann, C. (1983) Evidence against a scanning model of RNA splicing. EMBO J., 2, 727–733.

    Google Scholar 

  • Lang, K. M. and Spritz, R. A. (1983) RNA splice site selection: Evidence for a 5′ → 3′ scanning model. Science, 220, 1351–1355.

    Article  Google Scholar 

  • Lee, F., Squires, C. L., Squires, C. and Yanofsky, C. (1976) Termination of transcription in vitro in the Escherichia coli tryptophan operon leader region. J. Mol. Biol., 103, 383–393.

    Article  Google Scholar 

  • Lerner, M. R., Boyle, J. A., Mount, S. M., Wolin, S. L. and Steitz, J. A. (1980) Are snRNPs involved in splicing? Nature, 283, 220–224.

    Article  Google Scholar 

  • Lewin, B. (1980) Alternatives for splicing: Recognizing the ends of introns. Cell, 22, 324–326.

    Article  Google Scholar 

  • Loeb, L. A. and Kunkel, T. A. (1982) Fidelity of DNA synthesis. Ann. Rev. Biochem., 52, 429–457.

    Article  Google Scholar 

  • Loftfield, R. and Vanderjagt, D. (1972) The frequency of errors in protein synthesis. Biochem. J., 128, 1353–1356.

    Google Scholar 

  • MacCumber, M. and Ornstein, R. L. (1984) Molecular model for messenger RNA splicing. Science, 224, 402–405.

    Article  Google Scholar 

  • Maizels, N. M. (1973) The nucleotide sequence of the lactose messenger ribonucleic acid transcribed from the UV5 promoter mutant of Escherichia coli. Proc. Natl Acad. Sci. USA, 70, 3585–3589.

    Article  Google Scholar 

  • Majors, J. (1975) Initiation of an in vitro mRNA synthesis from the wild-type lac promoter. Proc. Natl Acad. Sci. USA, 72, 4394–4398.

    Article  Google Scholar 

  • Martin, F. and Tinoco, I. (1980) DNA-RNA hybrid duplexes containing (dA:rU) sequences are exceptionally unstable and may facilitate termination of transcription. Nucl. Acids Res., 8, 2295–3000.

    Article  Google Scholar 

  • McDevitt, M. A., Imperiale, M. J., Ali, H. and Nevins, J. R. (1984) Requirement of a downstream sequence for generation of a poly (A) addition site. Cell, 37, 993–999.

    Article  Google Scholar 

  • Montell, C., Fisher, E. F., Caruthers, M. H. and Berk, A. J. (1983) Inhibition of RNA cleavage but not polyadenylation by a point mutation in mRNA 3′ consensus sequence AAUAAA. Nature, 305, 600–605.

    Article  Google Scholar 

  • Moore, C. L. and Sharp, P. A. (1984) Site-specific polyadenylation in a cell-free reaction. Cell, 36, 581–591.

    Article  Google Scholar 

  • Mount, S. M. (1982) A catalogue of splice junction sequences. Nucl. Acids Res., 10, 459–472.

    Article  Google Scholar 

  • Murray, V. and Holliday, R. (1979a) Mechanism for RNA splicing of gene transcripts. FEBS Letts, 106, 5–7.

    Article  Google Scholar 

  • Murray, V. and Holliday, R. (1979b) A mechanism for RNA-RNA splicing and a model for the control of gene expression. Genet. Res., 34, 173–188.

    Article  Google Scholar 

  • Nevins, J. R. (1983) The pathway of eukaryotic mRNA formation. Ann. Rev. Biochem., 52, 441–466.

    Article  Google Scholar 

  • Nevins, J. R., Blanchard, J. M. and Darnell, J. E. (1980) Transcription units of adenovirus type 2: Termination of transcription beyond the poly (A) addition site in early regions 2 and 4. J. Mol. Biol., 144, 377–386.

    Article  Google Scholar 

  • Ninio, J. (1975) Kinetic amplification of enzyme discrimination. Biochimie, 57, 587– 595.

    Article  Google Scholar 

  • Ozoline, O. N., Oganesjan, M. G. and Kamzolova, S. G. (1980) On the fidelity of transcription of Escherichia coli RNA polymerase. FEBS Letts, 110, 123–125.

    Article  Google Scholar 

  • Padgett, R. A., Konarska, M. M., Grabowski, P. J., Hardy, S. F. and Sharp, P. A. (1984). Lariat RNAs as intermediates and products in the splicing of messenger RNA precursors. Science, 225, 898–903.

    Article  Google Scholar 

  • Parker, J., Johnston, T. C., Borgia, P. T., Holtz, G., Remaut, E. and Fiers, W. (1983) Codon usage and mistranslation: In vivo basal level misreading of the MS2 coat protein message. J. Biol. Chem., 258, 10007–10012.

    Google Scholar 

  • Price, D. H. and Parker, C. S. (1984) The 3′ end of Drosophila histone H3 mRNA is produced by a processing activity in vitro. Cell, 38, 423–429.

    Google Scholar 

  • Proudfoot, N. J. and Brownlee, G. G. (1976) 3′ Non-coding region sequences in eukaryotic messenger RNA. Nature, 263, 211–214.

    Article  Google Scholar 

  • Radding, C. M. and Kornberg, A. (1962) Enzymatic synthesis of deoxyribonucleic acid: XIII. Kinetics of primed and de novo synthesis of deoxynucleotide polymers. J. Biol. Chem., 237, 2877–2882.

    Google Scholar 

  • Rogers, J. and Wall, R. (1980) A mechanism for RNA splicing. Proc. Natl Acad. Sci. USA, 77, 1877–1879.

    Article  Google Scholar 

  • Rosenberger, R. F. and Foskett, G. (1981) An estimate of the frequency of in vivo transcriptional errors at a nonsense codon in Escherichia coli. Mol. Gen. Genet., 183, 561–563.

    Google Scholar 

  • Rosenberger, R. F. and Hilton, J. (1983) The frequency of transcriptional and translational errors at nonsense codons in the lacZ gene of Escherichia coli. Mol. Gen. Genet., 191, 207–212.

    Google Scholar 

  • Ruskin, B., Krainer, A. R., Maniatis, T. and Green, M. R. (1984) Excision of an intact intron as a novel lariat structure during pre-mRNA splicing in vitro. Cell, 38, 317–331.

    Article  Google Scholar 

  • Ryan, T. and Chamberlain, M. J. (1983) Transcriptional analyses with heteroduplex trp attenuator templates indicate that the transcript stem and loop structure serves as the termination signal. J. Biol. Chem., 258, 4690–4693.

    Google Scholar 

  • Salisbury, J. G., O’Conner, P. J. and Saffhill, R. (1978) Molecular size and fidelity of DNA polymerase a from the regenerating liver of the rat. Biochim. Biophys. Acta, 517, 181–185.

    Google Scholar 

  • Salser, W. (1977) Globin mRNA sequences: Analysis of base pairing and evolutionary implications. Cold Spring Harbor Symp. Quant. Biol., 42, 985–1002.

    Google Scholar 

  • Sharp, P. A. (1981) Speculations on RNA splicing. Cell, 23, 643–646.

    Article  Google Scholar 

  • Singer, B. and Spengler, S. (1981) Ambiguity and transcriptional errors as a result of modification of exocyclic amino groups of cytidine, guanosine, and adenosine. Biochemistry, 20, 1127–1132.

    Article  Google Scholar 

  • Springgate, C. F. and Loeb, L. A. (1975) On the fidelity of transcription by Escherichia coli ribonucleic acid polymerase. J. Mol. Biol., 97, 577–591.

    Article  Google Scholar 

  • Strniste, G. F., Smith, D. A. and Hayes, F. N. (1973) X-ray inactivation of the Escherichia coli deoxyribonucleic acid dependent ribonucleic acid polymerase in aqueous solution. II. Studies on initiation and fidelity of transcription. Biochemistry, 12, 603–608.

    Article  Google Scholar 

  • Tatei, K., Takemura, K., Mayeda, A., Fujiwara, Y., Tanaka, H., Ishihama, A. and Ohshima, Y. (1984) U1 RNA-protein complex preferentially binds to both 5′ and 3′ splice junction sequences in RNA or single-stranded DNA. Proc. Natl Acad. Sci. USA, 81, 6281–6285.

    Article  Google Scholar 

  • Tinoco, I., Borer, P. N., Dengler, B., Levine, M. D. and Oblenbeck, O. C. (1973) Improved estimation of secondary structure in ribonucleic acids. Nature, 246, 40–41.

    Google Scholar 

  • Treisman, R., Orkin, S. H. and Maniatis, T. (1983) Specific transcription and RNA splicing defects in five cloned β-thalassaemia genes. Nature, 302, 501–596.

    Article  Google Scholar 

  • Treisman, R., Proudfoot, N. J., Shander, M. and Maniatis, T. (1982) A single-base change at a splice site in a β°-thalassemic gene causes abnormal RNA splicing. Cell, 29, 903–911.

    Article  Google Scholar 

  • Volloch, V. Z., Rits, S. and Tumerman, L. (1979) A possible mechanism responsible for the correction of transcription errors. Nucl. Acids Res., 6, 1535–1546.

    Article  Google Scholar 

  • Wieringa, B., Hofer, E. and Weissmann, C. (1984) A minimal length but no specific internal sequence is required for splicing the large rabbit β-globin intron. Cell, 37, 915–925.

    Article  Google Scholar 

  • Wieringa, B., Meyer, F., Reiser, J. and Weissmann, C. (1983) Unusual splice sites revealed by mutagenic inactivation of an authentic splice site of the rabbit β-globin gene. Nature, 301, 38–43.

    Article  Google Scholar 

  • Yang, V. W., Lerner, M. R., Steitz, J. A. and Flint, S. J. (1981) A small nuclear ribonucleoprotein is required for splicing of adenoviral early RNA sequences. Proc. Natl Acad. Sci. USA, 78, 1371–1375.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Chapman and Hall

About this chapter

Cite this chapter

Anderson, R.P., Menninger, J.R. (1986). The accuracy of RNA synthesis. In: Kirkwood, T.B.L., Rosenberger, R.F., Galas, D.J. (eds) Accuracy in Molecular Processes. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4097-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4097-0_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8318-8

  • Online ISBN: 978-94-009-4097-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics