Skip to main content

An introduction to the problem of accuracy

  • Chapter
Book cover Accuracy in Molecular Processes

Abstract

The primary concern of this book is about how cells copy and maintain the information which is stored as base sequences in their DNA and how they use this information to specify the structure of proteins. It is generally accepted that these processes of information transfer are the most essential and basic functions any living organism has to perform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberts, B. and Sternglanz, R. (1977) Recent excitement in the DNA replication problem. Nature, 269, 655–661.

    Article  Google Scholar 

  • Baldwin, A. N. and Berg, P. (1966) Transfer ribonucleic acid-induced hydrolysis of valyl adenylate bound to isoleucyl ribonucleic acid synthetase. J. Biol. Chem., 241, 839–845.

    Google Scholar 

  • Bessman, M., Muzyczka, N., Goodman, M. and Schnaar, R. (1974) Studies on the biochemical basis of spontaneous mutation. II The incorporation of a base and its analogue into DNA by wild-type, mutator, and anti-mutator DNA polymerases. J. Mol. Biol., 88, 409–421.

    Article  Google Scholar 

  • Brutlag, D. and Kornberg, A. (1972) Enzymatic synthesis of DNA: a proofreading function for the 3′ to 5′ exonuclease activity in DNA polymerases. J. Biol. Chem., 247, 241–248.

    Google Scholar 

  • Clayton, L., Goodman, M., Branscomb, E. and Galas, D. (1979) Error induction and correction by mutant and wild-type T4 DNA polymerases: kinetic error discrimination mechanisms. J. Biol. Chem., 254, 1902–1912.

    Google Scholar 

  • Eisley, L. (1958) Darwin’s Century. Doubleday, New York.

    Google Scholar 

  • Eldred, E. W. and Schimmel, P. R. (1972) Rapid deacylation by isoleucyl tRNA synthetase of isoleucine specific tRNA aminoacylated with valine. J. Biol. Chem., 247, 2961–2968.

    Google Scholar 

  • Galas, D. and Branscomb, E. (1978) The enzymatic determinants of DNA polymerization accuracy: theory of T4 polymerase mechanisms. J. Mol. Biol., 124, 653–687.

    Article  Google Scholar 

  • Grosjean, H., de Henau, S. and Crothers, D. (1978) On the physical basis for ambiguity in genetic coding interaction. Proc. Natl Acad. Sci. USA, 75, 610–614.

    Google Scholar 

  • Guéron, M. (1978) Enhanced selectivity of enzymes by kinetic proofreading. American Scientist, 66, 202–208.

    Google Scholar 

  • Hopfield, J. J. (1974) Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl Acad. Sci. USA, 71, 4135–4139.

    Article  Google Scholar 

  • Jencks, W. P. (1975) Binding energy, specificity and enzyme catalysis: the circe effect. Advances Enzymol., 43, 219–410.

    Google Scholar 

  • Kirkwood, T. B. L. (1977) Evolution of ageing. Nature, 270, 301–304.

    Article  Google Scholar 

  • Kirkwood, T. B. L. (1981) Repair and its evolution: survival versus reproduction. In Physiological Ecology: An Evolutionary Approach to Resource Use (eds C. R. Townsend and P. Calow ), Blackwell, Oxford, pp. 165–189.

    Google Scholar 

  • Kirkwood, T. B. L., Hoiliday, R. and Rosenberger, R. F. (1984) Stability of the cellular translation process. Int. Rev. Cytol., 92, 93–132.

    Article  Google Scholar 

  • Lipscomb, W. N. (1978) Intramolecular interactions, enzyme activity and models. In Molecular Interaction and Activity in Proteins, Ciba Foundation Symposium 60, Amsterdam.

    Google Scholar 

  • Loftfield, R. B. (1963) The frequency of errors in protein biosynthesis. Biochem. J., 89, 82–87.

    Google Scholar 

  • Ninio, J. (1975) Kinetic amplification of enzyme discrimination. Biochimie, 57, 587– 595.

    Article  Google Scholar 

  • Ninio, J. (1982) Molecular Approaches to Evolution, Pitman, London.

    Google Scholar 

  • Nossal, N. and Hershfield, M. (1973) Exonuclease activity of wild-type and mutant T4 DNA polymerases: hydrolysis during DNA synthesis in vitro. In DNA Synthesis In Vitro (eds R. Wells and R. Inman ), University Park Press, Baltimore.

    Google Scholar 

  • Ofengand, J. (1977) tRNA and aminoacyl-tRNA synthetases. In Molecular Mechanisms of Protein Biosynthesis (eds H. Weissbach and S. Pestka) Academic Press, New York, pp. 7–79.

    Google Scholar 

  • Orgel, L. E. (1963) The maintenance of the accuracy of protein synthesis and its relevance to ageing. Proc. Natl Acad. Sci. USA, 49, 517–521.

    Article  Google Scholar 

  • Pauling, L. (1957) The probability of errors in the process of synthesis of protein molecules. In Festschrift Arthur Stoll, Birkhauser Verlag, Basel, pp. 597–602.

    Google Scholar 

  • Rossett, R. and Gorini, L. (1969) A ribosomal ambiguity mutation. J. Mol. Biol., 39, 95–112.

    Article  Google Scholar 

  • Schrödinger, E. (1944) What is Life?, Cambridge University Press, Cambridge.

    Google Scholar 

  • Steege, D. and Söll, D. (1979) Suppression. In Biological Regulation and Development. 1. Gene Expression (ed. R. F. Goldberger ), Plenum, New York, pp. 433–486.

    Google Scholar 

  • Weiss, R. and Gallant, J. A. (1983) Mechanism of ribosome frameshifting during translation of the genetic code. Nature, 302, 389–393.

    Article  Google Scholar 

  • Woese, C. (1970) Molecular mechanism of translation: a reciprocating ratchet mechanism. Nature, 226, 817–820.

    Article  Google Scholar 

  • Wolpert, L. (1981) Positional information and pattern formation. Phil. Trans. R. Soc. Lond. B, 295, 441–450.

    Article  Google Scholar 

  • Yarus, M. (1972a) Solvent and specificity. Binding and isoleucylation of phenylalanine tRNA (E. coli) by isoleucyl-tRNA synthetase from E. coli. Biochemistry, 11, 2352–2361.

    Google Scholar 

  • Yarus, M. (1972b) Phenylalanyl-tRNA synthetase and ile-tRNAphe: a possible verification mechanism for aminoacyl-tRNA. Proc. Natl Acad. Sei. USA, 69, 1915–1919.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Chapman and Hall

About this chapter

Cite this chapter

Galas, D.J., Kirkwood, T.B.L., Rosenberger, R.F. (1986). An introduction to the problem of accuracy. In: Kirkwood, T.B.L., Rosenberger, R.F., Galas, D.J. (eds) Accuracy in Molecular Processes. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4097-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4097-0_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8318-8

  • Online ISBN: 978-94-009-4097-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics