Advertisement

Kinetic costs of accuracy in translation

Chapter

Abstract

In this chapter we focus attention on enzymic selections in which kinetic proofreading (Hopfield, 1974; Ninio, 1975) contributes to the accuracy. We discuss, in particular, ribosomal translation, which is the most costly (Ingraham, Maal0e and Neidhardt, 1983), as well as the noisiest step (Bouadloun, Donner and Kurland, 1983) on the path from gene to protein. In a short, historical, section we discuss the shortcomings of equilibrium thermodynamics as well as of information theory to describe enzymic selections. This discussion provides a background to the proofreading concept. It is followed by discussions on the thermodynamic flows and driving forces that are necessary for enzymic selections in general (Kurland, 1978), as well as for kinetic proofreading in particular (Blomberg, Ehrenberg and Kurland, 1980; Blomberg, 1983a, b). Our discussion about the costs of accuracy in translation starts with an experimental section where the data obtained from a set of bacterial mutants are reviewed. These measurements illustrate in a dramatic way that ‘high accuracy’ ribosomes have a reduced kinetic efficiency in vitro as well as impaired elongation rate and growth rate in vivo. These results motivate a novel analysis of the kinetic costs of accuracy in growing bacteria (Kurland and Ehrenberg, 1984; Ehrenberg and Kurland, 1984), which is contrasted with previous cost analyses based on the dissipative losses of enzymic selections (Bennet, 1979; Savageau and Freter, 1979a, b; Freter and Savageau, 1980; Blomberg, Ehrenberg and Kurland, 1980).

Keywords

Peptide Bond Ternary Complex Rich Medium Elongation Rate Total Free Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersson, D. I., Bohman, K. T., Isaksson, L. A. and Kurland, C. G. (1982) Translation rates and misreading characteristics of rpsD mutants in Escherichia coli. Mol Gen. Genet., 187, 467–472.Google Scholar
  2. Andersson, D. I. and Kurland, C. G. (1983) Ram ribosomes are defective proofreaders. Mol Gen. Genet., 191, 378–381.CrossRefGoogle Scholar
  3. Andersson, S. G. E., Buckingham, R. H. and Kurland, C. G. (1983) Does codon-composition influence ribosome function? EMBOJ. , 3, 91–94.Google Scholar
  4. Bennet, Ch. H. (1979) Dissipation-error tradeoff in DNA replication. Biosystems, 11, 85–91.CrossRefGoogle Scholar
  5. Blomberg, C. (1983a) Thermodynamic aspects on accuracy in the synthesis of biomolecules. Int. J. Quant. Chem., 23, 687–707.CrossRefGoogle Scholar
  6. Blomberg, C. (1983b) Free energy cost and accuracy in branched selection processes of biosynthesis. Quart. Rev. Biophys., 16, 415–519.CrossRefGoogle Scholar
  7. Blomberg, C. and Ehrenberg, M. (1981) Energy considerations for kinetic proofreading in biosynthesis. J. Theor. Biol., 88, 631–670CrossRefGoogle Scholar
  8. Blomberg, C., Ehrenberg, M. and Kurland, C. G. (1980) Free energy dissipation constraints on the accuracy of enzymatic selections. Quart. Rev. Biophys., 13, 231–254.CrossRefGoogle Scholar
  9. Bohman, K. T., Ruusala, T., Jelenc, P. C. and Kurland, C. G. (1984) Kinetic impairment of restrictive streptomycin resistant ribosomes. Mol. Gen. Genet., 198, 90–99.CrossRefGoogle Scholar
  10. Bouadloun, F., Donner, D. and Kurland, C. G. (1983) Codon-specific missense errors in vivo. EMBOJ. , 2, 1351–1356.Google Scholar
  11. Churchward, G., Bremer, H. and Young, R. (1982). Macro-molecular composition of bacteria. J. Theor. Biol, 94, 651–670.CrossRefGoogle Scholar
  12. de Groot, S. R. and Mazur, P. (1969) Non-equilibrium Thermodynamics, North- Holland, Amsterdam and London.Google Scholar
  13. Edelmann, P. and Gallant, J. (1977) Mistranslation in E. coli. Cell, 10, 131–137.Google Scholar
  14. Ehrenberg, M. and Blomberg, C. (1980) Thermodynamic constraints on kinetic proofreading in biosynthetic pathways. Biophys. J., 31, 333–358.CrossRefGoogle Scholar
  15. Ehrenberg, M. and Kurland, C. G. (1984) Costs of accuracy determined by a maximal growth rate constraint. Quart. Rev. Biophys., 17, 45–82.CrossRefGoogle Scholar
  16. Ehrenberg, M. and Kurland, C. G. (1984) Costs of accuracy determined by a maximal growth rate constraint. Quart. Rev. Biophys., 17, 45–82.CrossRefGoogle Scholar
  17. Fersht, A. (1977a) Enzyme Structure and Mechanism, W. H. Freeman and Company, San Francisco, p. 283.Google Scholar
  18. Fersht, A. (1977b) Editing mechanisms in protein synthesis. Rejection of valine by the isoleucyl-tRNA synthetase. Biochemistry, 16, 1025–1030.CrossRefGoogle Scholar
  19. Fersht, A. (1981) Enzymic editing mechanisms and the genetic code. Proc. R. Soc. London B, 212, 351–379.CrossRefGoogle Scholar
  20. Fersht, A. and Dingwall, C. (1979) Establishing the misacylation/deacylation of the tRNA pathway for the editing mechanism of prokaryotic and eukaryotic valyl- tRNA synthetases. Biochemistry, 18, 1238–1244.CrossRefGoogle Scholar
  21. Fersht, A. and Kaethner, M. (1976) Enzyme hyperspecificity. Rejection of threonine by the valyl-tRNA synthetase by misacylation and hydrolytic editing. Biochemistry, 15, 3342–3346.CrossRefGoogle Scholar
  22. Fiers, W., Contreras, R., De Wachter, R., Haegeman, G., Merregaert, J., Min Jou, W. and Vanderberghe, A. (1971) Recent progress in the sequence determination of bacteriophage MS2 RNA. Biochimie, 53, 495–506.CrossRefGoogle Scholar
  23. Freter, R. R. and Savageau, M. A. (1980) Proofreading systems of multiple stages for improved accuracy of biological discrimination. J. Theor. Biol., 85, 99–123.CrossRefGoogle Scholar
  24. Galas, D. J. and Branscomb, E. W. (1976) Nature, London, 262, 617–619.Google Scholar
  25. Goel, N. S. and Yeas, M. (1975) The error catastrophe hypothesis with reference to ageing and the evolution of the protein synthesizing machinery. J. Theor. Biol., 55, 245–282.CrossRefGoogle Scholar
  26. Gorini, L. (1971) Ribosomal discrimination of tRNAs. Nature New Biol. , 234, 261–264.Google Scholar
  27. Gouy, M. and Grantham, R. (1980) Polypeptide elongation and tRNA cycling in Escherichia coli: A dynamic approach. FEBSLett. , 115, 151–155.CrossRefGoogle Scholar
  28. Grantham, R., Gautier, C., Gouy, M., Jacobzone, M. and Merrier, R. (1981). Codon catalog usage is a genome strategy modulated for gene expressivity. Nucl. Acids Res., 9, r 43–r 74.Google Scholar
  29. Grosjean, H. and Fiers, W. (1982) Preferential codon usage in prokaryotic genes: The optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes. Gene, 18, 199–209.CrossRefGoogle Scholar
  30. Hoffman, G. W. (1974) On the origin of the genetic code and the stability of the translation apparatus. J. Mol. Biol., 86, 349–362.CrossRefGoogle Scholar
  31. Hopfield, J.J. (1974) Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl Acad. Sci. USA, 71, 4135–4139.CrossRefGoogle Scholar
  32. Hopfield, J. J., Yamane, T., Yue, V. and Coutts, S. M. (1976) Direct experimental evidence for kinetic proofreading in aminoacylation of tRNAne. Proc. Natl Acad. Sei. USA, 73, 1164–1168.CrossRefGoogle Scholar
  33. Ingraham, J. L., Maaløe, O. and Neidhardt, F. C. (1983) Growth of the Bacterial Cell, Sinauer Associates Inc, Sunderland, Massachusetts.Google Scholar
  34. Jelenc, P. C. and Kurland, C. G. (1979) Nucleoside triphosphate regeneration decreases the frequency of translation errors. Proc. Natl Acad. Sei. USA, 76, 3174–3178.CrossRefGoogle Scholar
  35. Jelenc, P. C. and Kurland, C. G. (1984). Multiple effects of kanamycin on translational accuracy. Mol. Gen. Genet., 194, 195–199.CrossRefGoogle Scholar
  36. Kirkwood, T. B. L. (1977). Evolution of ageing. Nature, London, 270, 301–304.CrossRefGoogle Scholar
  37. Kirkwood, T. B. L. and Holliday, R. (1975) The stability of the translation apparatus. J. Mol. Biol., 97, 257–265.CrossRefGoogle Scholar
  38. Koch, A. L. (1971) The adaptive responses of Escherichia coli to a feast and famine existence. Adv. Microbiol., 6, 147–217.CrossRefGoogle Scholar
  39. Kurland, C. G. (1978) The role of guanine nucleotides in protein biosynthesis. Biophys. J., 22, 373–388.CrossRefGoogle Scholar
  40. Kurland, C. G. and Ehrenberg, M. (1984) Optimization of translation accuracy. Progr. Nucl. Acids Res. Mol. Biol, 31, 191–219.CrossRefGoogle Scholar
  41. Loeb, L. A. and Kunkel, T. A. (1982) Fidelity of DNA synthesis. Ann. Rev. Biochem., 51, 429–457.CrossRefGoogle Scholar
  42. Loftfield, R. (1963) The frequency of errors in protein biosynthesis. Biochem. J., 89, 82–92.Google Scholar
  43. Loftfield, R. and Vanderjagt, D. (1972) The frequency of errors in protein biosynthesis. Biochem. J., 128, 1353–1356.Google Scholar
  44. Maaløe, O. (1979) Regulation of the protein-synthesizing machinery ribosomes, tRNA, factors and so on. In Biological Regulation and Development (ed. R. F. Goldberger ), Plenum, New York, pp. 487–542.Google Scholar
  45. Mulvey, R. and Fersht, A. (1977) Editing mechanisms in aminoacylation of tRNA: ATP consumption and the binding of aminoacyl-tRNA by elongation factor Tu. Biochemistry, 16, 4731–4737.CrossRefGoogle Scholar
  46. Neidhardt, F. C., Bloch, P. L., Pedersen, S. and Reeh, S. (1977) Chemical measurement of steady-state levels of ten aminoacyl-transfer ribonucleic acid synthetases in Escherichia coli. J. Bacteriol., 129, 378–387.Google Scholar
  47. Ninio, J. (1975) Kinetic amplification of enzyme discrimination. Biochimie, 57, 587–595.CrossRefGoogle Scholar
  48. Ninio, J. (1982) Molecular Evolution, Pitman, London.Google Scholar
  49. Orgel, L. E. (1963) The maintenance of the accuracy of protein synthesis and its relevance to ageing. Proc. Natl Acad. Sei. USA, 49, 517–521.CrossRefGoogle Scholar
  50. Orgel, L. E. (1970) The maintenance of the accuracy of protein synthesis and its relevance to ageing: A correction. Proc. Natl Acad. Sei. USA, 67, 1476–1480.CrossRefGoogle Scholar
  51. Pauling, L. (1957) The probability of errors in the process of synthesis of protein molecules. In Festschrift Arthur Stoll, Birkhauser, A.G. Basel, pp. 597–602.Google Scholar
  52. Pedersen, S. (1984) Escherichia coli ribosomes translate in vivo with variable rate. EMBOJ. , 3, 2895–2898.Google Scholar
  53. Pettersson, I. and Kurland, C. G. (1980) Protein L7/L12 is required for optimal translation. Proc. Natl Acad. Sei. USA, 77, 4007–4010.CrossRefGoogle Scholar
  54. Ruusala, T. and Kurland, C. G. (1984) Streptomycin perturbs preferentially ribosomal proofreading. Mol. Gen. Genet., 198, 100–104.CrossRefGoogle Scholar
  55. Ruusala, T., Andersson, D. I., Ehrenberg, M. and Kurland, C. G. (1984) Hyper accurate ribosomes inhibit growth. EMBOJ., 1, 2575–2580.Google Scholar
  56. Ruusala, X., Ehrenberg, M. and Kurland, C. G. (1982a) Is there proofreading during polypeptide synthesis? EMBOJ. , 1, 741–745.Google Scholar
  57. Ruusala, T., Ehrenberg, M. and Kurland, C. G. (1982b) Catalytic effects of elongation factor Ts on polypeptide synthesis. EM BO J. , 1, 75–78.Google Scholar
  58. Savageau, M. A. and Freter, R. R. (1979a) On the evolution of accuracy and cost of tRNA proofreading. Proc. Natl Acad. Sci. USA, 76, 1902–1912.Google Scholar
  59. Savageau, M. A. and Freter, R. R. (1979b) Energy cost of proofreading to increase fidelity of transfer ribonucleic acid amino acylation. Biochemistry, 18, 3486–3492.CrossRefGoogle Scholar
  60. Thompson, R. C. and Dix, D. B. (1982) Accuracy of protein biosynthesis. A kinetic study of the reaction of poly(U)-programmed ribosomes with a leucyl tRNA 2- elongation factor Tu-GTP complex. J. Biol Chem., 257, 6677–6682.Google Scholar
  61. Thompson, R. C. and Karim, A. M. (1982) The accuracy of protein biosynthesis is limited by its speed: High fidelity selection by ribosomes of aminoaeyl-tRNA ternary complexes containing GTP (y S). Proc. Natl Acad. Sci. USA, 79, 4922–4926.CrossRefGoogle Scholar
  62. Thompson, R. C. and Stone, P. (1977) Proofreading of the codon-anticodon interaction on ribosomes. Proc. Natl Acad. Sci. USA, 74, 198–202.CrossRefGoogle Scholar
  63. Thompson, R. C., Dix, D. B. and Eccleston, J. F. (1980) Single turnover studies of guanosine triphosphate hydrolysis and peptide formation in the elongation factor Tu-dependent binding of aminoaeyl-tRNA to Escherichia coli ribosomes. J. Biol. Chem., 255, 11088–11090.Google Scholar
  64. Thompson, R. C., Dix, D. B., Gerson, R. B. and Karim, A. M. (1981) A GTPase reaction accompanying the rejection of Leu-tRNAz by UUU-programmed ribosomes. J. Biol. Chem., 256, 81–86.Google Scholar
  65. von der Haar, F. and Cramer, F. (1976) Hydrolytic action of aminoaeyl-tRNA synthetases from Baker’s yeast: Chemical proofreading preventing acylation of tRNA with misactivated valine. Biochemistry, 15, 4131–4138.CrossRefGoogle Scholar
  66. Wagner, E. G. H., Jelenc, P. C., Ehrenberg, M. and Kurland, C. G. (1982) Rate of elongation of polyphenylalanine in vitro. Eur. J. Biochem., 122, 193–197.CrossRefGoogle Scholar
  67. Yamane, T. and Hopfield, J. J. (1977). Experimental evidence for kinetic proofreading in the aminoacylation of tRNA by synthetase. Proc. Natl Acad. Sci. USA, 74, 2246–2250.CrossRefGoogle Scholar
  68. Yates, J. L. (1979) Role of ribosomal protein S12 in discrimination of aminoaeyl- tRNA. J. Biol. Chem., 254, 11550–11554.Google Scholar
  69. Zengel, J. M., Young, R., Dennis, P. P. and Nomura, M. (1977) Role of ribosomal protein S12 in peptide chain elongation: analysis of pleiotropic, streptomycin- resistant mutants of Escherichia coli. J. BacterioL, 129, 1320–1329.Google Scholar

Copyright information

© Chapman and Hall 1986

Authors and Affiliations

There are no affiliations available

Personalised recommendations