Skip to main content

Protoplast fusion

  • Chapter
Plant Protoplasts
  • 94 Accesses

Abstract

When protoplasts are isolated the only barrier between the cytoplasm and the external environment is the plasma membrane. The lack of the cell wall allows the plasma membrane of two or more protoplasts to come into intimate contact, something which is not possible under normal circumstances. When two protoplast plasma membranes come into contact, under certain conditions they will stick together rather like two soap bubbles. Later, again like two soap bubbles, if given on appropriate stimulus they will fuse together forming a single sphere surrounded by a single membrane [1,2]. Whilst studying mechanically isolated protoplasts, Kuster [3] was able to see occasional spontaneous fusion. However, with the development of enzymic methods for producing large numbers of isolated protoplasts great interest has now developed in the use of protoplast fusion (hybridization) as a possible plant breeding tool. Although positive results in this area leading to agronomically improved plants have been very scarce many people still believe that protoplast fusion offers a useful tool to plant breeders to make crosses between sexually incompatible species for transfer of nuclear or cytoplasmic characters. Protoplant fusion can be used to make crosses within species (intraspecific), between species (interspecific), within genera (intrageneric) and between genera (intergeneric).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Withers, L. A. and Cocking E. C. (1972) J. Cell Sci., 11, 59–75.

    Google Scholar 

  2. Burgess, L. and Fleming E. N. (1974) Planta, 118, 183–93.

    Article  Google Scholar 

  3. Kuster, E. (1910) Wilhelm Rouxs Arch Entwick Lungsmech Org., 30, 351–55.

    Google Scholar 

  4. Ito, Y. and Maeda, M. (1973) Exp. Cell Res., 80, 453–56.

    Article  Google Scholar 

  5. Kao, K. N. and Michayluk, M.R. (1974) Planta, 115, 355–67.

    Article  Google Scholar 

  6. Wallin, A., Glimelius, K. and Eriksson, T. (1974) Z. Pflanzenphysiol. 74, 64–68.

    Google Scholar 

  7. Mercer, W.E. and Schlegel, R. A. (1979) Exp. Cell. Res., 120, 417–21.

    Article  Google Scholar 

  8. Davey, M. R., Clothier, R., Balls, M. and Cocking, E.C. (1978) Protoplasma, 96, 157–72.

    Article  Google Scholar 

  9. Keller, W. A. and Melchers, G. Z. (1973) Natroforscb., 28, 737–41.

    Google Scholar 

  10. Power, J. B., Cummins, S. E. and Cocking, E. C. (1970) Nature (Lond.), 225, 1016–18.

    Article  Google Scholar 

  11. Hartman, J. X., Kao, K. N., Gamborg, O. L. and Mitler, R. A. (1973) Planta, 112, 43–56.

    Article  Google Scholar 

  12. Michel, W. (1939) Zellforscb., 20, 230–52.

    Google Scholar 

  13. Scherik, R. V. and Hildebrandt, A. C. (1971) Proc. Int 1. Center Nat. Rech. Sei., 21, 319–31.

    Google Scholar 

  14. Zimmermann, U. and Schevrich, P. (1981) Planta, 151, 26–32.

    Article  Google Scholar 

  15. Zimmermann, U. and Vienken, J. (1982) J. Membr. Biol., 67, 165–82.

    Article  Google Scholar 

  16. Kameya, T. (1975) Jap. J. Gen., 50, 417–20.

    Article  Google Scholar 

  17. Kameya, T. (1979) Cytologia, 44, 449–56.

    Google Scholar 

  18. Gleba, Y. Y. and Hoffman, F. (1978) Mol. Gen. Fen., 164, 137–43.

    Google Scholar 

  19. Keller, P.M., Person, S. and Snipes, W. (1977) J. Cell Sei., 28, 167–77.

    Google Scholar 

  20. Galbraith, D. W. and Galbraith, J. E. C. (1979) Z. Pflanzenpbysiol., 93, 148–58.

    Google Scholar 

  21. Patnaik, G., Cocking, E. C., Hamill, J. and Pental, D. (1982) Plant Sei. Lett., 24, 105–10.

    Article  Google Scholar 

  22. Carlson, P. S., Smith, H. H. and Dearing R. D. (1972) Proc. Natl. Acad. Sei. (USA), 69, 2292–94.

    Article  Google Scholar 

  23. Melchers, G. and Labib, G. (1974) Mol. Gen. Gen. 135 227–94.

    Article  Google Scholar 

  24. Power, J. B., Frearson, E. M., Hayward, C., George D., Evans, P. K., Berry, S. F. and Cocking, E. C. (1976) Nature (Lond.), 263, 500–502.

    Article  Google Scholar 

  25. King, P.J. (1982) In Proceedings of the 5th International Tissue Culture Congress. Tokyo, Japan (ed. Y. Komamine) Academic Press, New York.

    Google Scholar 

  26. Melchers, G. (1982) In Proceedings of the 5th International Tissue Culture Congress. Tokyo, Japan (ed. Y. Komamine) Academic Press, New York.

    Google Scholar 

  27. Melchers, G., Sacristan, M. D. and Holder, A. A. (1978). Carlsberg Res. Comm., 43, 203–18.

    Article  Google Scholar 

  28. Austin, S., Baer, M. A. and Hegelson, J. P. (1985) Plant Sei. Lett., 39, 25–81.

    Article  Google Scholar 

  29. Flick, C. E., Bravo, J. E., and Evans, D. A. (1983) Trends in Biotechnology, 3, 2–6.

    Google Scholar 

  30. Aviv, D. and Galun, E. (1980) Theor. App. Gen., 58, 121–27.

    Google Scholar 

  31. Galun, E. (personal communication).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Teresa Bengochea and John H. Dodds

About this chapter

Cite this chapter

Bengochea, T., Dodds, J.H. (1986). Protoplast fusion. In: Plant Protoplasts. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4095-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4095-6_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8317-1

  • Online ISBN: 978-94-009-4095-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics