Skip to main content

Alternate plant life history strategies and coexistence in randomly varying environments

  • Chapter
Theory and models in vegetation science

Part of the book series: Advances in vegetation science ((AIVS,volume 8))

Abstract

Environmental fluctuations can in theory allow the coexistence of ecologically similar species by ‘timesharing’ a niche, as envisioned by Hutchinson. The evolution of this situation is studied in a competition model, using as an example the evolution of seed germination strategies. Coexistence occurs via the evolution of ‘low-risk’ and ‘high-risk’ strategies for dealing with the variability by different species. Coexistence is promoted by intermediate levels of variability or disturbance, and by a trade-off between seed yield and seed survivorship. These results may be applicable also to other low vs. high risk life history options in unpredictably varying environments, such as: stress resistance vs. potentially rapid growth, high adult survivorship vs. high reproductive output. The model’s predictions differ from those obtained without consideration of life history evolution in response to environmental variability, and are consistent with some recent studies of plant strategies in intermittently stressed communities.

I thank A. Shmida for many discussions on this topic, D. Cohen and I. Noy-Meir for comments after a seminar presentation of this paper, and H. de Kroon, H. During, and E. Van der Maarel for decreasing my ignorance of the empirical literature.

Research conducted while the author was recipient of a Sir Charles Clore Postdoctoral Fellowship in the Department of Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrams, P., 1984. Variability in resource consumption rates and the coexistence of competing species. Theor. Pop. Biol. 25: 106–124.

    Article  Google Scholar 

  • Ågren, G. I. & Fagerström, T., 1984. Limiting dissimilarity in plants: randomness prevents exclusion of species with similar competitive abilities. Oikos 43: 369–375.

    Article  Google Scholar 

  • Boorman, L., 1982. Some plant growth patterns in relation to the sand dune habit. J. Ecol. 70: 607–614.

    Article  Google Scholar 

  • Bulmer, M. G., 1984. Delayed germination of seeds: Cohen’s model revisited. Theor. Pop. Biol. 26: 367–377.

    Article  Google Scholar 

  • Chesson, P. L., 1982. The stabilizing effect of a random environment. J. Math. Biol. 15: 1–36.

    Article  Google Scholar 

  • Chesson, P. L., 1986. Environmental variation and the coexistence of species. In: T. Case & J. Diamond (eds), Community ecology, pp. 240–256. Harper & Row, New York.

    Google Scholar 

  • Chesson, P. L. & Warner, R. R., 1981. Environmental variability promotes coexistence in lottery competitive systems. Am. Nat. 117: 923–943.

    Article  Google Scholar 

  • Cohen, D., 1966. Optimizing reproduction in a randomly varying environment..J. Theor. Biol. 12: 110–129.

    Article  Google Scholar 

  • Cohen, D., 1968. A general model of optimal reproduction in a randomly varying environment. J. Ecol. 56: 219–228.

    Article  Google Scholar 

  • Cushing, J., 1980. Two species competition in a periodic environment. J. Math. Biol. 10: 385–400.

    Article  Google Scholar 

  • Cushing, J., 1984. Periodic two predator, one prey interactions and the time sharing of a resource niche. SIAM J. Appl. Math. 44: 392–410.

    Article  Google Scholar 

  • De Mottoni, P. & Schiaffino, A., 1981. Competition systems with periodic coefficients: a geometric approach. J. Math. Biol. 11: 319–335.

    Article  Google Scholar 

  • During, H. J., Schenkeveld, A. J., Verkaar, H. J. & Willems, J. H., 1985. Demography of short-lived forbs in chalk grassland in relation to vegetation structure. In: J. White (ed.), The population structure of vegetation, pp. 341–370. Junk, Dordrecht.

    Google Scholar 

  • Ellner, S., 1984. Asymptotic behavior of some stochastic difference equation population models. J. Math. Biol. 19: 169–200.

    Article  Google Scholar 

  • Ellner, S., 1985. ESS germination strategies in randomly varying environments. Theor. Pop. Biol. 28: 50–79, 80–116.

    Article  CAS  Google Scholar 

  • Ernst, W. H. O., 1983. Anpassungsstrategien einjähriger Dünenpflanzen. Verh. Ges. Ökologie (Mainz 1981) 10: 485–495.

    Google Scholar 

  • Ernst, W. H. O., 1985. Some considerations of - and perspectives in coastal ecology. Vegetatio 62: 533–545.

    Article  Google Scholar 

  • Evenari, M., Shanan, L. & Tadmor, N., 1971. The Negev: The challenge of a desert. Harvard U. Press, Cambridge, MA.

    Google Scholar 

  • Grime, J. P., 1979. Plant strategies and vegetation processes. Wiley, New York.

    Google Scholar 

  • Groenendijk, A. M., 1985. Ecological consequences of tidal management for the salt-marsh vegetation. Vegetatio 62: 415–424.

    Article  Google Scholar 

  • Grubb, P. J., 1977. The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol. Rev. 52: 107–145.

    Article  Google Scholar 

  • Grubb, P. J., Kelly, D. & Mitchley, J., 1982. The control of relative abundance in communities of herbaceous plants. In: E. I. Newman (ed.), The plant community as a working mechanism, pp. 79–97, Blackwell, Oxford.

    Google Scholar 

  • Harper, J. L., 1977. Population biology of plants. Academic Press, New York.

    Google Scholar 

  • Havill, D. C., Ingold, A. & Pearson, J., 1985. Sulfide tolerance in coastal halophytes. Vegetatio 62: 279–285.

    Article  Google Scholar 

  • Hutchinson, G. E., 1961. The paradox of the plankton. Am. Nat. 95: 137–145.

    Article  Google Scholar 

  • Klopfer, P. H. & MacArthur, R. H., 1961. On the causes of tropical species diversity: niche overlap. Am. Nat. 95: 223–226.

    Article  Google Scholar 

  • Levin, S. A., 1980. Some models for the evolution of adaptive traits. In: C. Barigozzi (ed.), Vito Volterra Symposium on mathematical models in biology. Proc., Rome 1979, pp. 56–72. Springer, New York.

    Google Scholar 

  • May, R. M., 1973. Stability in randomly fluctuating versus deterministic environments. Am. Nat. 107: 621–650.

    Article  Google Scholar 

  • May, R. M., 1974. On the theory of niche overlap. Theor. Pop. Biol. 5: 297–332.

    Article  CAS  Google Scholar 

  • May, R. M. & MacArthur, R. H., 1972. Niche overlap as a function of environmental variability. Proc. Natl. Acad. Sci. USA 69: 1109–1113.

    Article  PubMed  CAS  Google Scholar 

  • Maynard Smith, J., 1982. Evolution and the theory of games. Cambridge University Press, Cambridge.

    Google Scholar 

  • Menges, E. S. & Waller, D. M., 1983. Plant strategies in relation to elevation and light in floodplain herbs. Am. Nat. 122: 454–473.

    Article  Google Scholar 

  • Rozema, J., Bijwaard, P., Prast, G. & Brockman, R., 1985. Ecophysiological adaptations of coastal halophytes from foredunes and salt marshes. Vegetatio 62: 499–521.

    Article  Google Scholar 

  • Schat, H., 1983. Germination ecology of some dune-slack pioneers. Acta Bot. Neerl. 32: 203–212.

    Google Scholar 

  • Schat, H. & Scholten, J., 1985. Comparative population ecology of dune slack species: the relation between population stability and germination behaviour in brackish environments. Vegetatio 61: 189–195.

    Article  Google Scholar 

  • Shmida, A. & Ellner, S., 1984. Coexistence of plant species with similar niches. Vegetatio 58: 29–55.

    Google Scholar 

  • Slatkin, M., 1978. The dynamics of a population in a Markovian environment. Ecology 59: 249–256.

    Article  Google Scholar 

  • Tilman, D., 1982. Resource competition and community structure. Princeton University Press, Princeton.

    Google Scholar 

  • Turelli, M., 1978. A reexamination of stability in randomly varying versus deterministic environments with comments on the stochastic theory of limiting similarity. Theor. Pop. Biol. 13: 244–267.

    Article  CAS  Google Scholar 

  • Turelli, M., 1981. Niche overlap and invasion of competitors in random environments. I. Models without demographic stochasticity. Theor. Pop. Biol. 20: 1–56.

    Article  Google Scholar 

  • Whittaker, R. H., 1975. Communities and ecosystems. MacMillan, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Dr W. Junk Publishers, Dordrecht

About this chapter

Cite this chapter

Ellner, S. (1987). Alternate plant life history strategies and coexistence in randomly varying environments. In: Prentice, I.C., van der Maarel, E. (eds) Theory and models in vegetation science. Advances in vegetation science, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4061-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4061-1_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8303-4

  • Online ISBN: 978-94-009-4061-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics