Skip to main content

Hierarchical complexity in ecology: a noneuclidean conception of the data space

  • Chapter
Theory and models in vegetation science

Part of the book series: Advances in vegetation science ((AIVS,volume 8))

  • 444 Accesses

Abstract

Vegetation is the consequence of the interaction of a series of widely differing processes, each uniquely scaled. Extensive slow processes pertain to high levels of organization, while fast local processes pertain to lower levels. Curvature in ordination gradients is often not artefact, but the result of interference between different levels. As straight gradients are lengthened by the inclusion of more heterogeneity in the data, the nature of relationships change between species and their environment and each other at distant places in environmental space. With change in these relationships, movement down the gradient does not always mean the same thing, and this causes curvature. In plotting a noneuclidean space onto a euclidean reference, the change in metrics causes apparent curvature. The technical causes of curvature (bimodality, double zeros, beta diversity) fit this model. Data transformations scale the analyses so that different levels are reflected in results. Between levels, when the processes of the lower level are not local enough to be trivial, the pattern from new upper level processes cannot assert a new straight gradient with coarser grained criteria. Thus transformation and the emergence of curvature followed eventually by new straight gradients allow the linking of different levels in an orderly fashion.

Nomenclature follows Gleason (1952), The New Britton and Brown Illustrated Flora of the Northeastern United States and Adjacent Canada.

I am grateful to Grant Cottam for permission to publish his ordination of the Wasatch Mountain data. Tom Givnish made many helpful suggestions for revision of this manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, T. F. H., Bartell, S. M. & Koonce, J. F., 1977. Multiple stable configurations in ordination of phytoplankton community change rates. Ecology 58: 1076–1084.

    Article  Google Scholar 

  • Allen, T. F. H., O’Neill, R. V. & Hoekstra, T. W., 1984a. Inter-level relations in ecological research and management: Some working principles from hierarchy theory. USDA Forest Service Gen. Techn. Rep. RM-110, Fort Collins.

    Google Scholar 

  • Allen, T. F. H., Sadowsky, D. A. & Woodhead, N., 1984b. Data transformation as a scaling operation in ordination of plankton. Vegetatio 56: 147–160.

    Google Scholar 

  • Allen, T. F. H. & Starr, T. B., 1982. Hierarchy: Perspectives for ecological complexity. University of Chicago Press, Chicago.

    Google Scholar 

  • Allen, T. F. H. & Wileyto, E. P., 1983. A hierarchical model for the complexity of plant communities. J. Theor. Biol. 101: 529–540.

    Article  Google Scholar 

  • Austin, M. P., 1980. Searching for a model for use in vegetation analysis. Vegetatio 42: 11–21.

    Article  Google Scholar 

  • Beals, E. W., 1973. Ordination: Mathematical elegance and ecological naiveté. J. Ecol. 61: 23–36.

    Article  Google Scholar 

  • Bray, J. R. & Curtis, J. T., 1957. An ordination of the upland forest communities of Southern Wisconsin. Ecol. Monogr. 27: 325–349.

    Article  Google Scholar 

  • Curtis, J. T., 1959. The vegetation of Wisconsin. Univ. of Wisconsin Press, Madison.

    Google Scholar 

  • Ellenberg, H., 1953. Physiologisches und ökologisches Verhalten derselben Pflanzenarten. Ber. Deutsch. Bot. Ges. 65: 351–362.

    Google Scholar 

  • Hill, M. O. & Gauch Jr., H. G., 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio 42: 47–58.

    Article  Google Scholar 

  • Holling, C. S., 1973. Resilience and stability of ecological systems. Ann. Rev. Ecol. Syst. 4: 1–24.

    Article  Google Scholar 

  • Levins, R., 1974. The qualitative analysis of partially specified systems. Ann. New York Acad. Sci. 231: 123–138.

    Article  CAS  Google Scholar 

  • Levins, R. & Lewontin, R., 1980. Dialectics and reductionism in ecology. Synthese 43: 47–78.

    Article  Google Scholar 

  • Lindman, H. & Caelli, T., 1978. Constant curvative Riemannian scaling. J. Math. Psychol. 17(2): 89–109.

    Article  Google Scholar 

  • Loucks, O. L., 1962. Ordinating forest communities by means of environmental scalars and phytosociological indices. Ecol. Monogr. 32: 137–166.

    Article  Google Scholar 

  • Maycock, P. F., 1957. The phytosociology of boreal conifer-hardwood forests of the great lakes region. Ph.D. thesis University of Wisconsin, Madison.

    Google Scholar 

  • McCune, B. & Allen, T. F. H., 1984. Will similar forests develop on similar sites? Can. J. Bot. 63: 367–376.

    Article  Google Scholar 

  • McCune, B. & Allen, T. F. H., 1984. Forest dynamics in the Bitterroot Canyons, Montana. Can. J. Bot. 63: 377–383.

    Google Scholar 

  • Mueller-Dombois, D. & Ellenberg, H., 1974. Aims and methods of vegetation ecology. Wiley, New York.

    Google Scholar 

  • Simon, H. A., 1962. The architecture of complexity. Proc. Am. Phil. Soc. 106: 467–482.

    Google Scholar 

  • Van der Maarel, E., 1979. Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39: 97–114.

    Article  Google Scholar 

  • Williamson, M. H., 1978. The ordination of incidence data. J. Ecol. 66: 911–920.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Dr W. Junk Publishers, Dordrecht

About this chapter

Cite this chapter

Allen, T.F.H. (1987). Hierarchical complexity in ecology: a noneuclidean conception of the data space. In: Prentice, I.C., van der Maarel, E. (eds) Theory and models in vegetation science. Advances in vegetation science, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4061-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4061-1_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8303-4

  • Online ISBN: 978-94-009-4061-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics