Skip to main content

Relations between community theory and community analysis in vegetation science: some historical perspectives

  • Chapter

Part of the book series: Advances in vegetation science ((AIVS,volume 8))

Abstract

Relations between community theory and community analysis are elucidated from a historical viewpoint. Four groups of relevant aspects are distinguished. This paper concentrates on aspects of spatial variation in species composition and species distribution relations.

Three major elements of community theory are discussed: the response of species to habitat conditions, interactions between species (competition, facilitation), and chance and random processes, both in the environment (disturbance) and in populations (dispersal). The debate island biogeography is used as a starting point for reviewing some theories about vegetation in terms of the elements they involve.

Early community theories are discussed with emphasis on Clements (‘competition’, ‘facilitation’) versus Gleason (‘chance’), and Braun-Blanquet (‘habitat’) versus Du Rietz (‘habitat’, ‘competition’, ‘chance’). Du Rietz’s theory of vegetation is manysided and well ahead of its time. Then the development and significance of quantitative plant ecology for community theory is treated with emphasis on Whittaker (‘habitat’, ‘competition’) versus Goodall (‘habitat’, ‘facilitation’). The potential use of objective and quantitative methods of analysis for hypothesis testing should be explored much further.

New theoretical ideas are summarized, including the role of the regeneration cycle of individual plants and neighbour interactions. Both interaction experiments and models for community dynamics will contribute to the general theory of plant communities. Perspectives for the development and testing of null hypotheses in vegetation science are discussed in view of the mutual relationships between community theory and community analysis, and the relations with dominance — diversity studies and multi-species pattern analysis indicated. The simplest hypothesis, i.e. that species combinations occur in sites independently and at random, is of little value. The next step would be that observed co-occurrences are determined by the overlap of species distributions over habitats. Then hypotheses on interaction and facilitation become relevant.

The first author did part of the work for this paper during two stays at Uppsala. We thank Colin Prentice for critical comments on the manuscript.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, T. F. H. & Starr, T. B., 1982. Hierarchy: perspectives for ecological complexity. Univ. Chicago Press, Chicago.

    Google Scholar 

  • Allen, T. F. H., 1987. Hierarchical complexity in ecology: a noneuclidean conception of the data space. Vegetatio 69: 17–25.

    Article  Google Scholar 

  • Austin, M. P., 1987. Models for the analysis of species response to environmental gradients. Vegetatio 69: 35–45.

    Article  Google Scholar 

  • Austin, M. P. & Noy-Meir, I., 1971. The problem of nonlinearity in ordination: experiments with two-gradient models. J. Ecol. 59: 763–773.

    Article  Google Scholar 

  • Bouxin, G. & Gautier, N., 1982. Pattern analysis in Belgian limestone grasslands. Vegetatio 49: 65–83.

    Article  Google Scholar 

  • Braakhekke, W. G., 1980. On coexistence: a causal approach to diversity and stability in grassland vegetation. Agric. Res. Rep. 502. Pudoc, Wageningen.

    Google Scholar 

  • Braun-Blanquet, J., 1913. Die Vegetationsverhältnisse der Schneestufe in den Rätisch-Lepontischen Alpen. Neue Denkschr. Schweiz. Naturforsch. Ges. 48: 1–347.

    Google Scholar 

  • Braun-Blanquet, J., 1921. Prinzipien einer Systematik der Pflanzengesellschaften auf floristischen Grundlage. Jahrb. St. Gallen Naturwiss. Ges. 57-II: 305–351.

    Google Scholar 

  • Braun-Blanquet, J., 1925. Zur Wertung der Gesellschaftstreue in der Pflanzensoziologie. Vierteljahrschr. Naturforsch. Ges. Zürich 52: 122–149.

    Google Scholar 

  • Braun-Blanquet, J., 1964. Pflanzensoziologie. 3. Aufl. Springer, Wien.

    Google Scholar 

  • Clements, F. E., 1904. The development and structure of vegeta- tion. Bot. Survey of Nebraska, Univ. Nebraska, Lincoln.

    Google Scholar 

  • Clements, F. E., Weaver, J. E. & Hanson, H. C., 1929. Plant competition. An analysis of community functions. Carnegie Inst. Washington.

    Google Scholar 

  • Connell, J. H. & Slatyer, R. O., 1977. Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 111: 1119–1144.

    Article  Google Scholar 

  • Connor, E. F. & Simberloff, D., 1979. Assembly of species com- munities: chance or competition? Ecology 60: 1132–1140.

    Article  Google Scholar 

  • Connor, E. F. & Simberloff, D., 1983. Neutral models of species co-occurrence patterns. In: D. R. Strong Jr, D. Simberloff, L. G. Abele & A. B. Thistle (eds), Ecological communities: conceptual issues and the evidence. Princeton Univ. Press Princeton.

    Google Scholar 

  • Curtis, J. T. & McIntosh, R. P., 1951. An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology 32: 476–496.

    Article  Google Scholar 

  • Dale, M., 1977. Graph theoretical analysis of the phytosociological structure of plant communities: the theoretical basis. Vegetatio 34: 137–154.

    Article  Google Scholar 

  • De Wit, C. T., 1960. On competition. Versl. Landbouwk. Onderz. 66(8): 1–82.

    Google Scholar 

  • Diamond, J., 1975. Assembly of species communities. In: M. Cody & J. Diamond (eds), Ecology and evolution of communities, pp. 342–444. Harvard Univ. Press, Cambridge, Mass.

    Google Scholar 

  • Diamond, J. & Gilpin, M., 1982. Examination of the ‘null’ model of Connor and Simberloff for species co-occurrences on islands. Oecologia 52: 64–74.

    Article  Google Scholar 

  • Du Rietz, G. E., 1928. Kritik an pflanzensoziologischen Kritikern. Bot. Not. Lund 1928: 1–30.

    Google Scholar 

  • Du Rietz, G. E., 1928. Kritik an planzensoziologschen Kritikern. Bot. Not. Lund 1928: 1–30.

    Google Scholar 

  • Du Rietz, G. E., 1932. Vegetationsforschung auf soziationsanalytischer Grundlage. Abderhalden Handb. Biol. Arbeitsmeth. 11: 293–480.

    Google Scholar 

  • Du Rietz, G. E., Fries, T. C. E. & Tengwall, T. A., 1918. Vorschlag zur Nomenklatur der soziologischen Pflanzengeographie. Svensk Bot. Tidskr. 12: 145–170.

    Google Scholar 

  • Ellenberg, H., 1954. Zur Entwicklung der Vegetationssystematik in Mitteleuropa. Angew. Pflanzensoz. Festschr. Aichinger 1: 134–143.

    Google Scholar 

  • Fresco, L. F. M., 1982. An analysis of species response curves and of competition from field data: some results from heath vegetation. Vegetatio 48: 175–185.

    Article  Google Scholar 

  • Gauch Jr, H. G. & Whittaker, R. H., 1972. Coenocline simulation. Ecology 53: 446–451.

    Article  Google Scholar 

  • Gause, G. F., 1936. The principles of biocoenology. Quart. Rev. Biol. 11: 320–333.

    Article  Google Scholar 

  • Gleason, H. A., 1917. The structure and development of the plant association. Bull Torrey Bot. Club 44: 463.

    Article  Google Scholar 

  • Gleason, H. A., 1926. The individualistic concept of the plant association. Bull. Torrey Bot. Club 53: 7–26.

    Article  Google Scholar 

  • Goodall, D. W., 1953. Objective methods for the classification of vegetation. I. The use of positive interspecific correlation. Austr. J. Bot. 1: 39–63.

    Google Scholar 

  • Goodall, D. W., 1954. Objective methods for the classification of vegetation. III. An essay in the use of factor analysis. Austr. J. Bot. 2: 304–324.

    Article  Google Scholar 

  • Goodall, D. W., 1963. The continuum and the individualistic association. Vegetatio 11: 297–316.

    Google Scholar 

  • Goodall, D. W., 1966. The nature of the mixed community. Proc. Ecol. Soc. Austr. 1: 84–96.

    Google Scholar 

  • Gray, J. S. & Mirza, F. B., 1979. A possible method for the detection of pollution-induced disturbance on marine benthic communities. Mar. Poll. Bull. 10: 142–146.

    Google Scholar 

  • Greig-Smith, P., 1964. Quantitative plant ecology, 2nd ed. Butterworths, London.

    Google Scholar 

  • Greig-Smith, P., 1979. Pattern in vegetation. J. Ecol. 67: 755–779.

    Article  Google Scholar 

  • Greig-Smith, P., 1983. Quantitative plant ecology, 3rd ed. Blackwell, Oxford.

    Google Scholar 

  • Greig-Smith, P., Austin, M. P. & Whitmore, T. C., 1967. The application of quantitative methods to vegetation survey. I. Association analysis and principal component ordination of rain forest. J. Ecol. 55: 483–503.

    Article  Google Scholar 

  • Grubb, P. J., 1977. The maintenance of species richness in plant communities: the importance of the regeneration niche. Biol. Rev. 52: 107–145.

    Article  Google Scholar 

  • Harper, J. L., 1982. After description. In: E. I. Newman (ed.), The plant community as a working mechanism, pp. 11–25. Blackwell, Oxford.

    Google Scholar 

  • Hill, M. O., 1973. Reciprocal averaging: an eigenvector method of ordination. J. Ecol. 61: 239–249.

    Google Scholar 

  • Hill, M. O., Bunce, R. G. H. & Shaw, M. W., 1975. Indicator species analysis, a divisive polythetic method of classification, and its application to a survey of native pinewoods in Scotland. J. Ecol. 63: 597–613.

    Article  Google Scholar 

  • Hill, M. O. & Gauch Jr, H. G., 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio 42: 47–58.

    Article  Google Scholar 

  • Hubbell, S. P., 1979. Tree dispersion, abundance, and diversity in a tropical dry forest. Science 203: 1299–1309.

    Article  PubMed  CAS  Google Scholar 

  • Kylin, H., 1926. Begriffsbildung und Statistik in der Pflanzensoziologie. Bot. Not. Lund 1926: 81–180.

    Google Scholar 

  • Lambert, J. M. & Dale, M. B., 1964. The use of statistics in phytosociology. Adv. Ecol. Res. 2: 59–99.

    Google Scholar 

  • Lambert, J. M. & Williams, W. T., 1962. Multivariate methods in plant ecology. IV. Nodal analysis. J. Ecol. 50: 775–802.

    Article  Google Scholar 

  • Levins, R., 1968. Evolution in changing environments. Princeton Univ. Press, Princeton.

    Google Scholar 

  • Langford, A. N. & Buell, M. F., 1969. Integration, identity and stability in the plant community. Adv. Ecol. Res. 6: 83–135.

    Article  Google Scholar 

  • MacArthur, R. H., 1972. Geographical ecology: patterns in the distribution of species. Harper and Row, New York.

    Google Scholar 

  • McIntosh, R. P., 1967. The continuum concept of vegetation. Bot. Rev. 33: 130–187.

    Article  Google Scholar 

  • McIntosh, R. P., 1975. H. A. Gleason — ‘individualistic ecologist’ 1882–1975: his contributions to ecological theory. Bull. Torrey Bot. Club 102: 253–273.

    Article  Google Scholar 

  • Noble, I. R. & Slatyer, R. O., 1980. The use of vital attributes to predict successional changes in plant communities subjected to recurrent disturbances. Vegetatio 43: 5–21.

    Article  Google Scholar 

  • Nordhagen, R., 1922. Vegetationsstudien auf der Insel Utsira im westlichen Norwegen. Bergens Mus. Arb. 1920–21 Naturv. Rekke 1: 1–149.

    Google Scholar 

  • Nordhagen, R., 1928. Die Vegetation und Flora des Sylenegebiet. I. Die Vegetation. Skr. Norsk. Vidensk. Akad. Mat. Naturv. Kl. 1927(1): 1–612.

    Google Scholar 

  • Nordhagen, R., 1940. Studien über die maritime Vegetation Norwegens. I. Die Pflanzengesellschaften der Tangwälle. Bergens Mus. Arb. 1939/40 Naturv. Rek. 2.

    Google Scholar 

  • Noy-Meir, I., 1971. Multivariate analysis of the semi-arid vegetation in southeastern Australia: nodal ordination by component analysis. Proc. Ecol. Soc. Austr. 6: 159–193.

    Google Scholar 

  • Noy-Meir, I. & Anderson, D. J., 1970. Multiple pattern analysis, or multiscale ordination, towards a vegetation hologram? In: G. P. Patil (ed.), Statistical Ecology 3: 207–225. Penn. State Univ. Press.

    Google Scholar 

  • Noy-Meir, I. & Whittaker, R. H., 1977. Continuous multivariate methods in community analysis: some problems and developments. Vegetatio 33: 89–98.

    Article  Google Scholar 

  • Orlbci, L., 1967. An agglomerative method for classification of plant communities. J. Ecol. 55: 193–206.

    Article  Google Scholar 

  • Pickett, S. T. A., Collins, S. L. & Armesto, J. J., 1987. A hierarchical consideration of causes and mechanisms of succession. Vegetatio 69: 109–114.

    Article  Google Scholar 

  • Poore, M. E. D., 1956. The use of phytosociological methods in ecological investigations. IV. General discussion of phytosociological problems. J. Ecol. 44: 28–50.

    Article  Google Scholar 

  • Raunkiaer, C., 1918. Recherches statistiques sur les formations végétales. Kgl. Dansk. Vidensk. Selsk. Bio. Medd. 1: 1–80.

    Google Scholar 

  • Raunkiaer, C., 1934. The life forms of plants and statistical plant geography. Oxford.

    Google Scholar 

  • Romell, L. G., 1920. Sur la règle de distribution des fréquences. Svensk Bot. Tidskr. 14: 1–20.

    Google Scholar 

  • Shmida, A. & Ellner, S., 1984. Coexistence of plant species with similar niches. Vegetatio 58: 29–55.

    Google Scholar 

  • Shipley, B. & Keddy, P. A., 1987. The individualistic and community-unit concepts as falsifiable hypotheses. Vegetatio 69: 47–55.

    Article  Google Scholar 

  • Shugart, H. H., 1984. A theory of forest dynamics. Springer, New York.

    Book  Google Scholar 

  • Simberloff, D., 1978. Using biogeographic data to determine if colonization is stochastic. Am. Nat. 112: 723–726.

    Article  Google Scholar 

  • Strong Jr, D. R. 1980. Null hypotheses in ecology. Synthese 43: 271–285.

    Article  Google Scholar 

  • Sugihara, G., 1980. Minimal community structure: an explanation of species abundance patterns. Am. Nat. 116: 770–787.

    Article  Google Scholar 

  • Swan, J. M. A., 1970. An examination of some ordination problems by use of simulated vegetation data. Ecology 51: 89–102.

    Article  Google Scholar 

  • Tansley, A. G., 1920. The classification of vegetation and the concept of development. J. Ecol. 8: 118–149.

    Article  Google Scholar 

  • Ter Braak, C. J. F. & Gremmen, N. J. M., 1987. Ecological amplitudes of plant species and the internal consistency of Ellenberg’s indicator values for moisture. Vegetatio 69: 79–87.

    Article  Google Scholar 

  • Tilman, D., 1982. Resource competition and community structure. Princeton University Press, Princeton.

    Google Scholar 

  • Trass, H., 1975. Some classification problems in Scandinavian phytocoenology. In: Some aspects of botanical research in the Estonian SSR, pp. 188–224. Academy of Science, Tartu.

    Google Scholar 

  • Turkington, R. & Harper, J. L., 1979. The growth, distribution and neighbour relationships of Trifolium repens in a permanent pasture. I. Ordination, pattern and contact. J. Ecol. 67: 201–218.

    Article  Google Scholar 

  • Tüxen, R., 1955. Das System der nordwestdeutschen Pflanzengesellschaften. Mitt. Flor.-soz. Arbeitsgem. N.F. 5: 155–176.

    Google Scholar 

  • Van der Maarel, E., 1969. On the use of ordination methods in phytosociology. Vegetatio 19: 21–46.

    Google Scholar 

  • Van der Maarel, E., 1975. The Braun-Blanquet approach in perspective. Vegetatio 30: 213–219.

    Article  Google Scholar 

  • Van der Maarel, E., Janssen, J. G. M. & Louppen, J. M. W., 1978. Tabord, a program for structuring phytosociological tables. Vegetatio 38: 143–156.

    Article  Google Scholar 

  • Van Tongeren, O. & Prentice, I. C., 1986. A spatial model for vegetation dynamics. Vegetatio 65: 163–173.

    Article  Google Scholar 

  • Watt, A. S., 1947. Pattern and process in the plant community. J. Ecol. 35: 1–22.

    Article  Google Scholar 

  • Webb, D. A., 1954. Is the classification of plant communities ei- ther possible or desirable? Bot. Tidsskr. 51: 362–370.

    Google Scholar 

  • Westhoff, V. & Van der Maarel, E., 1973. The Braun-Blanquet approach. In: R. H. Whittaker (ed.), Ordination and classification of communities, pp. 617–726, Junk, The Hague.

    Google Scholar 

  • Westman, W. E. & Peet, R. K., 1982. Robert H. Whittaker 1920–1980: the man and his work. Vegetatio 48: 97–122.

    Article  Google Scholar 

  • Whittaker, R. H., 1952. A study of summer foliage insect communities in the Great Smoky Mountains. Ecol. Monogr. 22: 1–44.

    Article  Google Scholar 

  • Whittaker, R. H., 1956. Vegetation of the Great Smoky Mountains. Ecol. Monogr. 26: 1–80.

    Article  Google Scholar 

  • Whittaker, R. H., 1962. Classification of natural communities. Bot. Rev. 28: 1–239.

    Article  Google Scholar 

  • Whittaker, R. H., 1965. Dominance and diversity in land plant communities. Science 147: 250–260.

    Article  PubMed  CAS  Google Scholar 

  • Whittaker, R. H., 1967. Gradient analysis of vegetation. Biol. Rev. 42: 207–264.

    Article  PubMed  CAS  Google Scholar 

  • Whittaker, R. H., 1972. Convergences of ordination and classification. In: E. Van der Maarel & R. Tüxen (eds), Grundfragen and Methoden der Pflanzensoziologie, pp. 39–57, Junk, Den Haag.

    Google Scholar 

  • Whittaker, R. H., Gilbert, L. E. & Connell, J. H., 1979. Analysis of two-phase pattern in a mesquite grassland. J. Ecol. 67: 935–952.

    Article  Google Scholar 

  • Whittaker, R. H. & Levin, S. A., 1977. The role of mosaic phenomena in natural communities. Theor. Pop. Biol. 12: 117–139.

    Article  CAS  Google Scholar 

  • Williams, W. T. & Lambert, J. M., 1959. Multivariate methods in plant ecology. I. Association analysis in plant communities. J. Ecol. 47: 83–101.

    Article  Google Scholar 

  • Williams, W. T., Lambert, J. M. & Lance, G. N., 1966. Multivariate analysis in plant ecology. V. Similarity analyses and information analysis. J. Ecol. 54: 427–445.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Dr W. Junk Publishers, Dordrecht

About this chapter

Cite this chapter

Noy-Meir, I., van der Maarel, E. (1987). Relations between community theory and community analysis in vegetation science: some historical perspectives. In: Prentice, I.C., van der Maarel, E. (eds) Theory and models in vegetation science. Advances in vegetation science, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4061-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4061-1_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8303-4

  • Online ISBN: 978-94-009-4061-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics