Skip to main content

Interpreting long-term changes in benthic community structure: a new protocol

  • Conference paper
Long-Term Changes in Coastal Benthic Communities

Part of the book series: Developments in Hydrobiology ((DIHY,volume 38))

Abstract

Documentation of long-term change in benthic ecosystems is important for assessing and managing the effects of such change on: 1) secondary production, particularly leading to commercially important food webs, 2) pollutant transfer within the food web, 3) the ability of the ‘new’ assemblage to metabolically burn-off labile detritus that might otherwise accumulate, contributing to long-term hypoxia, and 4) recyling of nutrients from the seafloor back to primary producers.

Organism-sediment relationships which accompany benthic disturbances have predictable features. Although participating species may vary regionally or seasonally, their life-history attributes and functional relationships to the associated sediment appear to be universal. Pioneering seres are near-surface dwelling, productive, and are readily available to demersal predators. However, these taxa may be potential pollutant vectors. Dense tube mats may promote the deposition and retention of high BOD organic matter. Late successional stage seres are represented by deeply bioturbating ‘head-down’ deposit feeders. The deep cryptic infaunal habitat of these species may make them less important as prey for epifaunal predators. Sediments populated by these equilibrium assemblages are characteristically low in labile organic matter, sedimentary sulphides, and oxygen demand. Nutrients (N, P, Si) are returned to primary producers by biogenic irrigation of sediment pore water.

Mapping of successional mosaics is important for documenting major long-term change in benthic community structure and associated biogenic processes. Our mapping tool consists of a vessel-deployed sediment-profile camera; organism-sediment relationships can be imaged in situ with this instrument. Such a mapping protocol is not intended to replace traditional sampling. Rather, the successional maps are used to efficiently detect change in a system, design a cost-efficient sampling grid for obtaining geochemical and biological ground-truth samples, and to construct hypotheses about how the change might answer the four outlined management questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aller, R. C, 1978. Experimental studies of changes produced by deposit feeders on pore water, sediment, and overlying water chemistry. Am. J. Sci. 278: 1185–1234.

    Article  CAS  Google Scholar 

  • Aller, R. C, 1980. Diagenetic processes near the sediment-water interface of Long Island Sound. I. Decomposition and nutrient element geochemistry (S, N, P). In B. Saltzman (ed.), Estuarine Physics and Chemistry: Studies in Long Island Sound. Advances in Geophysics, Academic Press, New York; London; Toronto; Sydney; San Francisco: 238–350.

    Google Scholar 

  • Aller, R. C, 1982. The effects of macrobenthos on chemical properties of marine sediments and overlying waters. In P. L. McCall & M. J. S. Tevesz (eds), Animal–Sediment Relations: The Biogenic Alteration of Sediments. Plenum Press, New York: 53–102.

    Google Scholar 

  • Aller, R. C. & J. Y. Yingst, 1978. Biogeochemistry of tube-dwellings: a study of the sedentary polychaete Amphitrite or-nata (Leidy). J. mar. Res. 36: 201–254.

    CAS  Google Scholar 

  • Aller, R. C. & J. Y. Yingst, 1985. Effects of the marine deposit-feeders Heteromastus filiformis (polychaeta), Macoma balthica (bivalvia), and Tellina texana (bivalvia) on averaged sedimentary solute transport, reaction rates, and microbial distributions. J. mar. Res. 43: 615–645.

    Article  CAS  Google Scholar 

  • Bader, R. G., 1954. The role of organic matter in determining the distribution of pelecypods in marine sediments. J. mar. Res. 13: 32–47.

    Google Scholar 

  • Becker, D. S. & K. K. Chew, 1983. Fish-benthos coupling in sewage enriched marine environments. NOAA Final Report, Project NA80RAD00050, School of Fisheries, University of Washington, Seattle, Washington: 78 pp.

    Google Scholar 

  • Bryan, G. W., 1985. Bioavailability and effects of heavy metals in marine deposits. In B. H. Ketchum, J. M. Capuzzo, W. V. Burt, I. W. Duedall, P. K. Park & D. R. Kester (eds), Wastes in the Ocean. John Wiley & Sons, New York: 41–79.

    Google Scholar 

  • Cuomo, M. C, 1985. Sulphide as a larval settlement cue for Capitella sp I. Biogeochemistry 1: 169–181.

    Article  Google Scholar 

  • De Vlas, J., 1979. Annual food intake by plaice and flounder in a tidal flat area in the Dutch Wadden Sea, with special reference to consumption of regenerating parts of macrobenthic prey. Neth. J. Sea Res. 13: 117–153.

    Article  Google Scholar 

  • Germano, J. D., 1983a. High resolution sediment profiling with Remots® camera system. Sea Technology 24: 35–41.

    Google Scholar 

  • Germano, J. D., 1983b. Infaunal succession in Long Island Sound: animal-sediment interactions and the effects of predation. Unpublished PhD. Thesis, Yale University, New Haven, Ct.: 142 pp.

    Google Scholar 

  • Gould, S. J., 1981. The Mismeasure of Man. W. W. Norton & Company, N.Y.: 352 pp.

    Google Scholar 

  • Gray, J. S., 1976. Are marine base–line surveys worth while? New Scientist 70: 219–221.

    Google Scholar 

  • Green, R. H., 1979. Sampling design and statistical methods for environmental biologists. J. Wiley & Sons, N.Y.: 257 pp.

    Google Scholar 

  • Green, R. H., 1984. Some guidelines for the design of biological monitoring programs in the marine environment. In H. H. White (ed.), Concepts in Marine Pollution Measurements. University of Maryland, College Park, (Maryland): 647–655.

    Google Scholar 

  • Johnson, R. G., 1972. Conceptual models of benthic marine communities. In T. J. M. Schopf (ed.), Models in Paleobiology. Freeman, Cooper, and Co. San Francisco: 148–159.

    Google Scholar 

  • Lee, H. & R. C. Swartz, 1980. Biological processes affecting the distribution of pollutants in marine sediments. Part II. Bio-deposition and bioturbation. In R. A. Baker (ed.), Contaminants and Sediments. Ann Arbor Science Publishers, Ann Arbor, Mich. 2: 555–606.

    CAS  Google Scholar 

  • Lunz, J. D. & D. R. Kendall, 1982. Benthic Resources Assessment Technique, a method for quantifying the effects of benthic community changes on fish resources. Conference Proceedings of the Marine Pollution Sessions, Oceans ’82, NOAA, Office of Marine Pollution Assessment, Rockville, Maryland: 1021–1027.

    Google Scholar 

  • McCall, P. L. & M. J. S. Tevesz, 1983. Soft–bottom succession and the fossil record. In M. J. S. Tevesz & P. L. McCall (eds), Biotic Interactions in Recent and Fossil Benthic Communities. Plenum Press, New York; London: 157–194.

    Google Scholar 

  • Nowell, A. R. M., P. A. Jumars & J. E. Eckman, 1981. Effects of biological activity on the entrainment of marine sediments. Mar. Geol. 42: 133–153.

    Article  Google Scholar 

  • Officer, C. B., R. B. Biggs, J. L. Taft, L. E. Cronin, M. A. Tyler & W. R. Boynton, 1984. Chesapeake Bay anoxia: origin, development, and significance. Science 223: 22–27.

    Article  PubMed  CAS  Google Scholar 

  • Odum, E. P., 1969. The strategy of ecosystem development. Science 16: 262–270.

    Article  Google Scholar 

  • Pearson, T. H. & R. Rosenberg, 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr. mar. Biol. A. Rev. 16: 229–311.

    Google Scholar 

  • Pearson, T. H. & S. D. Stanley, 1979. Comparative measurement of the redox potential of marine sediments as a rapid means of assessing the effect of organic pollution. Mar. Biol. 53: 371–379.

    Article  Google Scholar 

  • Peet, R. K., 1974. The measurement of species diversity. Ann. Rev. Ecol. Syst. 5: 285–307.

    Article  Google Scholar 

  • Phelps, D. K., 1967. Partitioning of the stable elements Fe, Zn, Sc, and Sm within a benthic community, Anasco Bay, Puerto Rico. In B. Aberg & F. P. Hungate (eds), Radioecological Concentration Processes. Pergamon Press, New York: 721–734.

    Google Scholar 

  • Revsbech, N. P., B. B. Jørgensen & T. H. Blackburn, 1979. Oxygen in the sea bottom measured with a microelectrode. Science 207: 1355–1356.

    Google Scholar 

  • Rhoads, D. C, 1967. Biogenic reworking of intertidal and subtidal sediments in Barnstable Harbor and Buzzards Bay, Massachusetts. J. Geol. 75: 461–476.

    Article  Google Scholar 

  • Rhoads, D. C. & L. F. Boyer, 1982. The effects of marine benthos on physical properties of sediments. In P. L. McCall & M. J. S. Tevesz (eds), Animal-Sediment Relations. Plenum Press, New York; London: 3–52.

    Google Scholar 

  • Rhoads, D. C. & S. Cande, 1971. Sediment profile camera for in situ study of organism-sediment relations. Limnol. Oceanogr. 16: 110–114.

    Article  Google Scholar 

  • Rhoads, D. C. & J. D. Germano, 1982. Characterization of organism–sediment relations using sediment profile imaging: an efficient method of remote ecological monitoring of the seafloor (REMOTS® System). Mar. Ecol. prog. Ser. 8: 115–128.

    Article  Google Scholar 

  • Rhoads, D. C. & J. W. Morse, 1971. Evolutionary and ecological significance of oxygen-deficient marine basins. Lethaia 4: 413–428.

    Article  Google Scholar 

  • Rhoads, D. C. & D. K. Young, 1971. Animal-sediment relations in Cape Cod Bay, Massachusetts. II. Reworking by Molpadia oolitica (Holothuroidea). Mar. Biol. 11: 255–261.

    Article  Google Scholar 

  • Rhoads, D. C, R. C. Aller & M. Goldhaber, 1977. The influence of colonizing benthos on physical properties and chemical diagenesis of the estuarine seafloor. In B. C. Coull (ed.), Ecology of the Marine Benthos. Belle Baruch Library in Marine Sciences, Univ. S. Carolina Press, Columbia, S.C. 6: 113–138.

    Google Scholar 

  • Rhoads, D. C, P. L. McCall & J. Y. Yingst, 1978. Disturbance and production on the estuarine seafloor. Am. Sci. 66: 577–586.

    Google Scholar 

  • Rice, D. L., 1986. Early diagenesis in bioadvected sediments: relationships between the diagenesis of Beryllium-7, sediment reworking rates, and the abundance of conveyor-belt deposit-feeders. J. mar. Res. 44: 149–184.

    Article  Google Scholar 

  • Routledge, R. D., 1980. Bias in estimating the diversity of large, uncensused communities. Ecology 61: 276–281.

    Article  Google Scholar 

  • Rudnick, D. T., R. Elmgren & J. B. Frithsen, 1985. Meiofaunal prominence and benthic seasonality in a coastal marine ecosystem. Oecologia 67: 157–168.

    Article  Google Scholar 

  • Smith, L. D., 1985. Juvenile spot (Leiostomus xanthurus) predation on meiofauna in muddy and sandy substrates. Unpublished M. S. Thesis, Univ. S. Carolina, Columbia, S.C.: 46 pp.

    Google Scholar 

  • Sumeri, A., 1984. Operational aspects of capped in-water disposal of contaminated dredged material. Environmental Effects of Dredging, Waterways, Experiment Station, Vicks-burg, D-84-5.

    Google Scholar 

  • Swartz, R. C. & H. E. Lee II, 1980. Biological processes affecting the distribution of pollutants in marine sediments. Part I. Accumulation, trophic transfer, biodegradation and migration. In R. A. Baker (ed.), Contaminants and Sediments. Ann Arbor Science Publishers, Ann Arbor, Mich. 2: 533–553.

    Google Scholar 

  • Tenore, K. R., L. F. Boyer, J. Corral, C. Garcia-Fernandez, N. Gonzalez, E. G. Gurrian, R. B. J. Iglesias, M. Krom, E. Lopez-Jamar, J. McClain, M. Pamatmat, A. Perez, D. C. Rhoads, R. M. Rodriguez, G. Santiago, J. Tietjen, J. Westrich & H. L. Windom, 1982. Coastal upwelling in the Rias Bajas, NW Spain: contrasting the benthic regimes of the Rias de Arosa and de Muros. J. mar. Res. 40: 701–772.

    CAS  Google Scholar 

  • Trevaillon, A., R. R. C. Edwards & J. H. Steele, 1970. Dynamics of a benthic bivalve. Steele (ed.), Marine Food Chains. Univ. of California Press, Berkeley, Ca.: 285–295.

    Google Scholar 

  • Wolda, H., 1981. Similarity indices, sample size, and diversity. Oecologia 50: 296–302.

    Article  Google Scholar 

  • Woodin, S. A., 1982. Browsing: Important in marine sedimentary environments? Spionid polychaete examples. J. exp. mar. Biol. Ecol. 60: 35–45.

    Article  Google Scholar 

  • Woodin, S. A., 1984. Effects of browsing predators: Activity changes in infauna following tissue loss. Biol. Bull. 166: 558–573.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Dr W. Junk Publishers, Dordrecht

About this paper

Cite this paper

Rhoads, D.C., Germano, J.D. (1987). Interpreting long-term changes in benthic community structure: a new protocol. In: Heip, C., Keegan, B.F., Lewis, J.R. (eds) Long-Term Changes in Coastal Benthic Communities. Developments in Hydrobiology, vol 38. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4049-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4049-9_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8297-6

  • Online ISBN: 978-94-009-4049-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics