Skip to main content

Metasomatism Involving Fluids in CO2-H2O-NaCl

  • Chapter
Chemical Transport in Metasomatic Processes

Part of the book series: NATO ASI Series ((ASIC,volume 218))

Abstract

Phase relations in the system, CO2-H2O-NaCl, are used to model metamorphic fluids in carbonate rocks. It is possible that two fluid phases coexist along most temperature-depth paths in metamorphic rocks if the chloride content of the fluid system is adequate. The presence of, two fluid phases is shown to have considerable influence on the evolution of fluid composition in reacting metasomatic systems. An aqueous brine interacting with dehydration, decarbonation, hydrationde-carbonation and dehydration-decarbonation equilibria is considered. Dilution of a one phase fluid describes the process involving dehydration equilibria. Dilution of the brine by CO2 as in the remaining three reaction types drives fluids into a two-phase region of coexisting liquid and vapour. Saturation in NaCl is shown to be possible for systems undergoing hydration-decarbonation reactions. Irreversible reaction is possible in systems undergoing dehydrationde-carbonation. The rate of reaction progress increases in systems that reach saturation with respect to halite. Still greater rates of reaction progress are possible in systems undergoing irreversible reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, L.H., 1931, Equilibrium binary systems under pressure. I. An experimental and thermodynamic investigation of the system NaCl-Hn2O at 25°C. J. Amer. Chem. Soc. 53, 3769–3813.

    Article  Google Scholar 

  • Akella, J., Vaidya, S.N., and Kennedy G.C., 1969, Melting of sodium chloride at pressures to 65 kb: Physical Review, v. 185, p. 1135–1140.

    Article  Google Scholar 

  • Bianconi, F., 1971, Geologia e petrografia della regione del Campolungo. Beiträge z. geol. Karte der Schweiz, 142, p. 238

    Google Scholar 

  • Bowers, T.S., and Helgeson, H.C., 1983a, Calculation of the thermodynamic and geochemical consequences of nonideal mixing in the system H2O-CO2-NaCl on phase relations in geological systems; Equation of state for H2O-CO2-NaCl fluids at high pressures and temperatures: Geochim. et Cosmochim. Acta, v. 47, p. 1247–1275.

    Article  Google Scholar 

  • Bowers, T.S., and Helgeson, H.C., 1983b, Calculation of the thermodynamic and geochemical consequences of nonideal mixing in the system H2O-CO2-NaCl on phase relations in geological systems: Metamorphic equilibria at high pressures and temperatures: Am. Mineral. v. 68, p. 1059–1075.

    Google Scholar 

  • Chou, I-Ming, 1982, Phase relations in the system NaCl-KCl-H20. Part I: Differential thermal analysis of the NaCl-KCl liquidus at 1 atmosphere and 500, 1000, 1500, and 2000 bars. Geochim. Cosmochim. Acta 46, 1957–1962.

    Article  Google Scholar 

  • Ellis, A.J. and Golding, R.M., 1963, The solubility of carbon dioxide above 100°C in water and in sodium chloride solutions. Amer. J. Sci., 261, 47–60.

    Article  Google Scholar 

  • Franck, E.V. and Todheide, K., 1959, Thermische Eigenschaften überkritischer Mischungen von Kohlendioxid und Wasser bis zu 750°C und 2000 Atm., Zeitschr. Phys. Chem. Neue Folge, 22, 232–259.

    Article  Google Scholar 

  • Frape, S.K., Fritz, P. and McNutt, R.H., 1984, Water-rock interaction and chemistry of groundwaters from the Canadian Shield. Geochim. Cosmochim. Acta 48, 1617–1627.

    Article  Google Scholar 

  • Gehrig, M., 1980, Phasengleichgewichte und PVT-Daten ternärer Mischungen aus Wasser, Kohlendioxid und Natriumchlorid bis 3 kbar und 550°C. Doctorate dissertation, published by Hochschulverlag, Freiburg, Germany.

    Google Scholar 

  • Greenwood, H.J., 1967, Mineral equilibria in the system MgO-SiO2-H2O-CO2: In: Researches in Geochemistry, P.H. Abelson, ed., New York, John Wiley & Sons, p. 542–567.

    Google Scholar 

  • Grjotheim, K., Heggelimd, P., Krohn, C. and Motzfeldt, K., 1962, On the solubility of CO2 in molten halides. Acta Chem. Scand., v. 16, 689–694.

    Article  Google Scholar 

  • Gunter, W.D., Chou, I.M. and Girsperger, S., 1983, Phase relations in the system NaCl-KCl-H2O II: Differential thermal analysis of the halite liquidus in the NaCl-H2O binary above 450°C. Geochim. Cosmochim. Acta 47, 863–873.

    Article  Google Scholar 

  • Hendel, E.M. and Hollister, L.S., 1981, An empirical solvus for CO2-H2O-2.6 wt. % salt. Geochim. Cosmochim. Acta, 45, 225–228.

    Article  Google Scholar 

  • Keevil, N.B., 1942, Vapour pressures of aqueous solutions at high temperatures. J. Amer. Chem. Soc, 64, 841–850.

    Article  Google Scholar 

  • Kreulen, R., 1980, CO2-rich fluids during regional metamorphism on Naxos (Greece): carbon isotopes and fluid inclusions. Am. Jour. Sci., 280, p. 745–771.

    Article  Google Scholar 

  • Mercolli, I., 1982, Le inclusione fluide nei noduli do quarzo dei marmi dolomitici della regione del Campolungo (Ticino). Schweiz. mineral. petrogr. Mitt., v. 62, p. 245–312.

    Google Scholar 

  • Nordstrom, U., 1983, Conceptional framework for the chemical processes in the Stripa groundwaters. KBS progress report, 83–01, Stockholm, Sweden, 106–115.

    Google Scholar 

  • Pichavant, M., Ramboz, C. and Weisbrod, A., 1982, Fluid immiscibility in natural processes: Use and misuse of fluid inclusion data. Chemical Geol., 37, 1–27.

    Article  Google Scholar 

  • Pitzer, K.S., 1984, Ionic fluids. Jour. Phys. Chem., 88, 2689–2697.

    Article  Google Scholar 

  • Poty, B.P., Stalder, H.A., and Weisbrod, A.M., 1974, Fluid inclusion studies in Quartz from fissures of Western and Central Alps. Schweiz. mineral, petrogr. Mitt., 54, 717–752.

    Google Scholar 

  • Roedder, E., 1984, FLuid Inclusions. Rev. Min., v. 12 Min. Soc. Am. ed.

    Google Scholar 

  • Salemink,, J., 1985, Skarn and ore formation at Seriphos, Greece as a consequence of granodiorite intrusion. Geologica Ultraiectina No. 40, p. 231.

    Google Scholar 

  • Schuiling, R.D. and Kreulen, R., 1979, Are thermal domes heated by CO2-rich fluids from the mantle? Earth and Planet. Sci. Lett., 43, 298–302.

    Article  Google Scholar 

  • Sisson, V.B., Craford, M.L., and Thompson, P.H., 1981, CO2-brine immiscibility at high temepratures, evidence from calcareous metasedimentary rocks. Contrib. Mineral. Petrol., v. 78, p. 371–378.

    Article  Google Scholar 

  • Skippen, G.B. and Trommsdorff, V., 1986, The influence of NaCl and KCl on phase relations in metamorphosed carbonate rocks. Am. Jour. Sci., 286, 81–104.

    Article  Google Scholar 

  • Takenouchi, S., and Kennedy, G.C., 1964, The binary system H2O-CO2 at high temperatures and pressures. Am. Jour. Sci., v. 262, p. 1055–1074.

    Article  Google Scholar 

  • Takenouchi, S., and Kennedy, G.C., 1965, The solubility of carbon dioxide in NaCl solutions at high temperatures and pressures. Am. Jour. Sci., v. 263, p. 445–454.

    Article  Google Scholar 

  • Tödheide, K., and Franck, E.U., 1963, Das Zweiphasengebiet und die kritische Kurve im System Kohlendioxid-Wasser bis zu Drucken von 3500 bar. Z. Phys. Chem., v. 37, p. 387–401.

    Article  Google Scholar 

  • Touret, J., 1977, The significance of fluid inclusions in metamorphic rocks. In: D.G. Fraser, ed. Thermodynamics in Geology. D. Reidel Publ. Co., Dondrecht, Holland.

    Google Scholar 

  • Trommsdorff, V., and Skippen, B.G., 1986, Vapour loss (“Boiling”) as a mechanism for fluid evolution in metamorophic rocks. Contrib. Min. Petrol.

    Google Scholar 

  • Trommsdorff, V., Skippen, G.B. and Ulmer, P., 1985, Halite and sylvite as solid inclusions in high-grade metamorphic rocks. Contrib. Mineral. Petrol., v. 89, p. 24–29.

    Article  Google Scholar 

  • Walther, J.V., 1983, Description and interpretation of metasomatic phase relations at high pressures and temperatures: 2. Metasomatic reactions between quartz and dolomite at Campolungo, Switzerland. Am. Jour. Sci., v. 283A, p. 459–485.

    Google Scholar 

  • Walther, J.V. and Orville, P., 1982, Rates of metamorphism and volatile production and transport in regional metamorphism. Contrib. Mineral. Petrol., 79, p. 252–257.

    Article  Google Scholar 

  • Wiebe, R. and Gaddy, V.L., 1940, The solubility of carbon dioxide in water at various temperatures from 12 to 40° and pressures up to 500 atmospheres. Critical phenomena. Journ. Amer. Chem. Soc., 62, p. 815–817.

    Article  Google Scholar 

  • Yardley, B.W.D., Shepherd, T.J. and Barber, J.P., 1983, Fluid Inclusion studies of high-grade rocks from Connemara, Ireland. In: M.P. Atherton and C. D. Gribble eds., Migmatites, Melting and Metamorphism., Shiva Publ. Ltd., Cheshire, UK, p. 110–126.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 D. Reidel Publishing Company

About this chapter

Cite this chapter

Trommsdorff, V., Skippen, G. (1987). Metasomatism Involving Fluids in CO2-H2O-NaCl. In: Helgeson, H.C. (eds) Chemical Transport in Metasomatic Processes. NATO ASI Series, vol 218. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4013-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4013-0_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8280-8

  • Online ISBN: 978-94-009-4013-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics