Skip to main content

Tennahedrite Thermochemistry and Metal Zoning

  • Chapter
Chemical Transport in Metasomatic Processes

Part of the book series: NATO ASI Series ((ASIC,volume 218))

Abstract

Provisional activity-composition relations are developed for tennahedrites approximating the chemical formula (Ag,Cu)10(Fe,Zn)2−(Sb,As)4S13. These relations are based on a “Temkin” type model for the configurational entropy combined with an expression for the vibrational Gibbs energy based on a second-degree Taylor series expansion in terms of the composition variables X2≡Zn/(Zn+Fe), X3≡As/(As+Sb), and X4≡Ag/(Ag+Cu) and an ordering variable s≡\( {\rm{(X}}_{{\rm{Ag}}}^{{\rm{TRG}}}\,{\rm{ - }}\,{\rm{3/2}}\,\,{\rm{X}}_{{\rm{Ag}}}^{{\rm{TET}}}{\rm{)}} \) which describes the distribution of Ag and Cu between trigonal-planar and tetrahedral metal sites. Calibration of the parameters in the resulting expression for the Gibbs energy is based on considerations of the Ag-Cu and Fe-Zn exchange reactions between tennahedrites and other crystalline phases. This calibration gives an expression for the distribution of Ag and Cu between trigonal-planar and tetrahedral metal sites that predicts changes from trigonal-planar to tetrahedral site preference for Ag with increasing Ag/(Ag+Cu) in accord with the local maxima in cell edge observed in natural (Ag,Cu)10(Fe,Zn)2Sb4S13 tennahedrites. The resulting activity-composition relations predict extensive miscibility gaps for (Ag,Cu)10Fe2(Sb,As)4S13 and (Ag,Cu)10Zn2(Sb,As)4S13 tennahedrites consistent with the chemical variations observed in nature. They support the hypothesis that crystal energetics and As-Sb fractionation between tennahedrite and hydrothermal fluids determine the distribution of silver in many zoned Pb-Zn-Cu-Ag sulfide ore deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Araya, R.A., Bowles, J.F.W., and Simpson, P.R. (1977) ‘Relationships between composition and reflectance in the tennantite-tetrahedrite series of the El Teniente ore deposit, Chile’. Neues Jahrbuch für Mineralogie Monatshefte, 467–482.

    Google Scholar 

  • Atanasov, V.A. (1975) ‘Argentian mercurian tetrahedrite, a new variety, from the Chiprovtsi ore deposit, western Stara-Planina Mountains, Bulgaria’. Mineralogical Magazine, 40, 233–237.

    Article  Google Scholar 

  • Augsten, B.E.K., Thorpe, R.I., Harris, D.C., and Fedikow, M.A.F. (1986) ‘Ore mineralogy of the Agassiz (MacLellan) gold deposit in the Lynn lake region, Manitoba‘. Canadian Mineralogist, 24, 369–377.

    Google Scholar 

  • Barton, P.B., Jr. and Toulmin, P., III (1966) ‘Phase relations involving sphalerite in the Fe-Zn-S system’. Economic Geology, 61, 815–849.

    Article  Google Scholar 

  • Basu, K., Bortnykov, N., Moorherjee, A., Mozgova, N., and Tsepin, A.I. (1981) ‘Rare minerals from Rajpura-Dariba, Rajasthan, India. III. Plumbian tetrahedrite’. Neues Jahrbuch für Mineralogie Abhandlungen, 141, 280–289.

    Google Scholar 

  • Birch, W.D. (1981) ‘Silver su1fosalts from the Meerschaum mine, Mt. Wills, Victoria, Australia’. Mineralogical Magazine, 44, 73–78.

    Article  Google Scholar 

  • Charlat, M. and Levy, C. (1974) ‘Substitutions multiples dans la série tennantite-tétrahedrite’. Bulletin de la Société Francaise de Minéralogie et de Cristallographie, 97, 241–250.

    Google Scholar 

  • Charlat, M. and Levy, C. (1975) ‘Influence principales sur le parametre cristallin dans la serie tennantite-tétrahédrite’. Bulletin de la Société Francaise de Minéralogie et de Cristallographie, 98, 152–158.

    Google Scholar 

  • Chen, T.T., Dutrizac, J.E., Owens, D.R., and LaFlamme, J.H.G. (1980) ‘Accelerated tarnishing of some chalcopyrite and tennantite specimens’. Canadian Mineralogist, 18, 173–180.

    Google Scholar 

  • Craig, J.R. and Barton, P.B., Jr. (1973) ‘Thermochemical approximations for sulfosalts’. Economic Geology, 68, 493–506.

    Article  Google Scholar 

  • Czamanske, G.K. and Hall, W.E. (1975) ‘The Ag-Bi-Pb-Sb-S-Se-Te mineralogy of the Darwin lead-silver-zinc deposit, southern California’. Economic Geology, 70, 1092–1110.

    Article  Google Scholar 

  • Eldridge, C.S., Barton, P.B., Jr., and Ohmoto, H. (1983) ‘Mineral textures and their bearing on formation of the Kuroko orebodies’. In H. Ohmoto and B.J. Skinner, Eds., The Kuroko and Related Volcanogenic Massive Sulfide Deposits: Economic Geology Monograph 5, 241–281.

    Google Scholar 

  • Goodell, P.C. and Petersen, U. (1974) ‘Julcani mining district, Peru: A study of metal ratios’. Economic Geology, 69, 347–361.

    Article  Google Scholar 

  • Hackbarth, C.J. (1984) Depositional modeling of tetrahedrite in the Coeur D’Alene district. Ph.D. Thesis, Harvard University, Cambridge, Massachusetts.

    Google Scholar 

  • Hackbarth, C.J. and Petersen, Ulrich (1984) ‘Systematic compositional variations in argentian tetrahedrite’. Economic Geology, 79, 448–460.

    Article  Google Scholar 

  • Hall, A.J. (1972) ‘Substitution of Cu by Zn, Fe, and Ag in synthetic tetrahedrite’. Bulletin de la Société francaise de Mineralogie et de Petrologie, 95, 583–594.

    Google Scholar 

  • Helgeson, H.C. (1969) ‘Thermodynamics of hydrothermal systems at elevated temperatures and pressures’. American Journal of Science, 227, 729–804.

    Article  Google Scholar 

  • Helgeson, H.C., Kirkham, D.H., and Flowers, G.C. (1981) ‘Theoretical prediction of the thermodynamic behavior of aqueous elecctrolytes at high pressures and temperatures: IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 5 kb and 600°C’. American Journal of Science, 281, 1249–1516.

    Article  Google Scholar 

  • Indolev, L.N., Nevoysa, G.G., Bryzgalov, I.A. (1971) ‘New data on the composition of stibnite and the isomorphism of copper and silver’. Doklady Akademii Nauk SSSR, 199, 1146–1149.

    Google Scholar 

  • Ixer, R.A. and Stanley, C.J. (1980) ‘Mineralization at Le Pulec, Jersey, Channel Islands’. Mineralogical Magazine, 43, 1025–1029.

    Article  Google Scholar 

  • Ixer, R.A. and Stanley, C.J. (1980) ‘Mineralization at Le Pulec, Jersey, Channel Islands’ Mineralogical Magazine, 43, 1025–1029.

    Article  Google Scholar 

  • Jeanloz, R. and Johnson, M.L. (1984) ‘A note on the bonding, optical spectrum and composition of tetrahedrite’. Physics and Chemistry of Minerals, 11, 52–54.

    Article  Google Scholar 

  • Johnson, M.L. and Burnham, C.W. (1985) ‘Crystal structure refinement of an arsenic-bearing argentian tetrahedrite’. American Mineralogist, 70, 165–170.

    Google Scholar 

  • Johnson, M.L. and Jeanloz, R. (1983) ‘A brillouin-zone model for compositional variation in tetrahedrite’. American Mineralogist, 68, 220–226.

    Google Scholar 

  • Johnson, N.E., Craig, J.R., Rimstidt, J.D. (1986) ‘Compositional trends in tetrahedrite’. Canadian Mineralogist, 24, 385–397.

    Google Scholar 

  • Kalbskopf, R. (1972) ‘Strukturverfeinerung des freibergits’. Tschermaks Mineralogisch und Petrographische Mitteilungen, 18, 147–155.

    Article  Google Scholar 

  • Kane, F.J. and Petersen, U. (1986) ‘Tetrahedrite and bulk ore zoning in the Mimosa section of Julcani, Peru’. Economic Geology (in press).

    Google Scholar 

  • Kullerud, G., Donnay, G., and Donnay, J.D.H. (1969) ‘Omission solid solution in magnetite:Kenotetrahedral magnetite’. Zeitschrift für Kristallographie, 128, 1–17.

    Article  Google Scholar 

  • Lawson, A.W. (1947) ‘On simple binary solutions’. Journal of Chemical Physics, 15, 831–842.

    Article  Google Scholar 

  • Lichtner, P.C. (1985) ‘Continuum model for simultaneous chemical reactions and mass transport in hydrothermal systems’. Geochimica et Cosmochimica Acta, 49, 779–800.

    Article  Google Scholar 

  • Loucks, R.R. (1984) Zoning and ore genesis at Topia, Durango, Mexico. Unpublished Ph.D. Thesis, Harvard University, Cambridge, Massachusetts.

    Google Scholar 

  • Luce, F.D., Tuttle, C.L., and Skinner, B.J. (1977) ‘Studies of sulfosalts of copper. V. Phases and phase relations in the system Cu-Sb-As-S between 350° and 500°C’. Economic Geology, 72, 271–289.

    Article  Google Scholar 

  • Miller, J.W. and Craig, J.R. (1983) ‘Tetrahedrite-tennantite series compositional variations in the Cofer deposit, Mineral District, Virginia’. American Mineralogist, 68, 227–234.

    Google Scholar 

  • Mishra, B. and Mookherjee, A. (1986) ‘Analytical formulation of phase equilibrium in two observed sulfide-sulfosalt assemblages in the Rajpura-Duriba Polymetallic deposit’. Economic Geology, 81, 627–639.

    Article  Google Scholar 

  • Nash, J.T. (1975) ‘Geochemical studies in the Park City district: II. Sulfide mineralogy and minor-element chemistry, Mayflower mine’. Economic Geology, 70, 1038–1049.

    Article  Google Scholar 

  • Nikitin, W.W. (1929) ‘Parallele Verwach des Fahlerzes und seine chemische konstitution’. Zeitschrift für Kristallographie, 88, 54–62.

    Google Scholar 

  • O’Leary, M.J. and Sack, R.O. (1987) ‘Fe-Zn exchange reaction between tetrahedrite and sphalerite in natural environments’. Contributions to Mineralogy and Petrology (in press).

    Google Scholar 

  • Pauling, L. and Neuman, E.W. (1934) ‘The crystal structure of binnite, (Cu,Fe)12As4S13, and the chemical composition and structure of minerals in the tetrahedrite group’. Zeitschift für Kristallographie, 88, 54–62.

    Google Scholar 

  • Pattrick, R.A.D. (1978) ‘Microprobe analyses of cadmium-rich tetrahedrites from Tyndrum, Perthshire, Scotland’. Mineralogical Magazine, 42, 286–288.

    Article  Google Scholar 

  • Pattrick, R.A.D. and Hall, A.J. (1983) ‘Silver substitution into synthetic zinc, cadmium, and iron tetrahedrites’. Mineralogical Magazine, 47, 441–451.

    Article  Google Scholar 

  • Pattrick, R.A.D. (1984) ‘Sulphide mineralogy of the Tomnadashan copper deposit and the Corrie Buie lead veins, South Loch Tayside, Scotland’. Mineralogical Magazine, 48, 85–91.

    Article  Google Scholar 

  • Petersen, U., Noble, D.C., Arenas, M.J., and Goodell, P.C. (1977) ‘Geology of the Julcani mining district, Peru’. Economic Geology, 72, 931–949.

    Article  Google Scholar 

  • Peterson, R.C. and Miller, I. (1986) ‘Crystal structure and cation distribution in freibergite and tetrahedrite’. Mineralogical Magazine, 50, 717–721.

    Article  Google Scholar 

  • Petruk, W. and Staff (1971) ‘Characteristics of the sulfides. In J.L. Jambor, Eds., The Silver Arsenide Deposits of the Cobalt-Gowganda Region, Ontario’. Canadian Mineralogist, 11, 196–231.

    Google Scholar 

  • Pisutha-Arnond, V. and Ohmoto, H. (1983) ‘Thermal history and chemical and isotopic compositions of the ore-forming fluids responsible for the Kuroko massive sulfide deposits in the Hokuroku district of Japan’. In Hiroshi Ohmoto, and B.J. Skinner, Eds., The Kuroko and Related Volcanogenic Massive Sulfide, Deposits: Economic Geology Monograph 5, 523–558.

    Google Scholar 

  • Raabe, K.C. and Sack, R.O. (1984) ‘Growth zoning in tetrahedrite-tennantite from the Hock Hocking mine, Alma, Colorado’. Canadian Mineralogist, 22, 577–582.

    Google Scholar 

  • Riley, J.F. (1974) ‘The tetrahedrite-freibergite series, with reference to the Mount Isa Pb-Zn-Ag ore body’. Mineralium Deposita, 9, 117–124.

    Article  Google Scholar 

  • Robbins, M., Werthein, G.K., Sherwood, R.C., Buchanan, D.N.E. (1971) ‘Magnetic properties and site distributions in the system FeCr2O4-Fe3O4 (Fe2+Cr2-xFe3 x+04),. Journal of Physics and Chemistry of Solids, 32, 717–729.

    Article  Google Scholar 

  • Sack, R.O. (1980) ‘Some constraints on thermodynamic mixing properties of Fe-Mg olivines and orthopyroxenes’. Contributions to Mineralogy and Petrology, 71, 257–269.

    Article  Google Scholar 

  • Sack, R.O. (1982) ‘Spinels as petrogenetic indicators: activity-composition relations at low pressures’. Contributions to Mineralogy and Petrology, 79, 169–186.

    Article  Google Scholar 

  • Sack, R.O. and Loucks, R.R. (1985) ‘Thermodynamic properties of tetrahedrite-tennantites: constraints on the interdependence of the Ag⇄Cu, Fe⇄Zn, cu⇄Fe, and As⇄Sb exchange reactions’. American Mineralogist, 70, 1270–1289.

    Google Scholar 

  • Sandecki, J. and Amcoff, O. (1981) ‘On the occurrence of silver-rich tetrahedrite at Garpenberg Norra, Central Sweden’. Neues Jahrbuch fur Mineralogie Abhandlungen, 141, 324–340.

    Google Scholar 

  • Shannon, R.D. (1981) ‘Bond distances in sulfides and a preliminary table of sulfide crystal radii’. In Michael O’Keeffe and Alexandra Navrotsky, Eds., Structure and Bonding in Crystals 2, p. 53–70. Academic Press, New York.

    Google Scholar 

  • Shimada, N. and Hirowatari, F. (1972) ‘Argentian tetrahedrites from the Taishu-Shigekuma mine, Tsushima Island, Japan’. Mineralogical Journal, 7, 77–87.

    Google Scholar 

  • Shimazaki, Y. (1974) ‘Ore minerals of the kuroko-type deposits’. In S. Ishihara, Ed., Geology of the Kuroko Deposits: Mining Geology Special Issue 6, 311–322.

    Google Scholar 

  • Springer, G. (1969) ‘Electron probe analyses of tetrahedrite’. Neues Jahrbuch fur Mineralogie Monatshefte 1, 24–32.

    Google Scholar 

  • Thompson, J.B., Jr. (1969) ‘Chemical reactions in crystals’. American Mineralogist, 54, 341–375.

    Google Scholar 

  • Thompson, J.B., Jr. and Thompson, A.B. (1976) ‘A model system for mineral facies in pelitic schists’. Contributions to Mineralogy and Petrology, 58, 243–277.

    Article  Google Scholar 

  • Timofeyevskiy, D.A. (1967) ‘First find of Ag-rich freibergite in the USSR’. Doklady Akademii Nauk SSSR, 176, 1388–1391.

    Google Scholar 

  • White, J.L., Orr, R.L., Hultgren, R. (1957) ‘The thermodynamic properties of silver-gold alloys’. Acta Metallurgica, 5, 747–760.

    Article  Google Scholar 

  • Wu, I. and Petersen, U. (1977) ‘Geochemistry of tetrahedrite and mineral zoning at Casapalca, Peru’. Economic Geology, 72, 993–1016.

    Article  Google Scholar 

  • Wuensch, B.J. (1964) ‘The crystal structure of tetrahedrite, Cu12Sb4S13’. Zeitschrift für Kristallographie, 119,437–453.

    Article  Google Scholar 

  • Wuensch, B.J., Takeuchi, Y., and Nowacki, W. (1966) ‘Refinement of the crystal structure of binnite’. Zeitschrift fur Kristallographie, 123, 1–20.

    Google Scholar 

  • Yui, S. (1971) ‘Heterogeneity within a single grain of minerals of the tennantite-tetrahedrite series’. Society of Mining Geologists of Japan Special Issue, vol. 2, Proceedings of IMA-IAGOD Meeting, 1970, Joint Symposium Volume, 22–29.

    Google Scholar 

  • Zakrzewski, M.A. and Nugteren, H.W. (1984) ‘Mineralogy and origin of the distal volcanosedimentary deposit at the Hallefors silver mine, Bergslagen, central Sweden’. Canadian Mineralogist, 22, 583–593.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 D. Reidel Publishing Company

About this chapter

Cite this chapter

Sack, R.O., Ebel, D.S., O’Leary, M.J. (1987). Tennahedrite Thermochemistry and Metal Zoning. In: Helgeson, H.C. (eds) Chemical Transport in Metasomatic Processes. NATO ASI Series, vol 218. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4013-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4013-0_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8280-8

  • Online ISBN: 978-94-009-4013-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics