Skip to main content

Some Properties of Soil and Synthetic Iron Oxides

  • Chapter
Iron in Soils and Clay Minerals

Part of the book series: NATO ASI Series ((ASIC,volume 217))

Abstract

The size of Fe oxide crystals in soils usually ranges between 10 and 100 nm. Together with the poorly crystalline Al-silicates (such as allophane) and the humics, the Fe oxides are among the smallest particles found in soils (Fig. 9-1). Consequently, Fe oxide particles may contribute considerably to the total surface area of soils, even if their proportion amounts to only a few percent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Ainsworth, C. C., M. E. Sumner, and V. J. Hurst. 1985. Effect of aluminum substitution in goethite on phosphorous adsorption: I. Adsorption and isotopic exchange. Soil Sci. Soc. Am. J. 49:1142–1149.

    Article  CAS  Google Scholar 

  2. Arca, M. N., and S. B. Weed. 1966. Soil aggregation and porosity in relation to contents of free iron oxide and clay. Soil Sci. 101: 164–170.

    Article  CAS  Google Scholar 

  3. Atkinson, R. J. 1969. Crystal morphology and surface reactivity of goethite. Ph.D. Thesis, University of Western Australia.

    Google Scholar 

  4. Barron, V., and J. Torrent. 1984. Influence of aluminum substitution on the color of synthetic hematites. Clays Clay Miner. 32:157–158.

    Article  CAS  Google Scholar 

  5. Barrow, N. J. 1985. Reaction of plant nutrients and of pollutants with variable-charge soils. Adv. Agron. 38:183–230.

    Article  CAS  Google Scholar 

  6. Baumgardner, M. F., and E. R. Stoner. 1982. Soil mineralogical studies by remote sensing. Trans. 12th Int. Congr. Soil Sci., Panel Discussion Papers: 419–441.

    Google Scholar 

  7. Bigham, J. M., D. C. Golden, S. W. Buol, S. B. Weed, and L. H. Bowen. 1978. Iron oxide mineralogy of well-drained Ultisols and Oxisols. II. Influence on color, surface area, and phosphate retention. Soil Sci. Soc. Am. J. 42:825–830.

    Article  CAS  Google Scholar 

  8. Blackmore, A. V. 1973. Aggregation of clay by the products of iron(III) hydrolysis. Aust. J. Soil. Res. 11:75–82.

    Article  CAS  Google Scholar 

  9. Borggaard, O. K. 1983a. Iron oxides in relation to aggregation of soil particles. Acta Agric. Scand. 23:257–260.

    Article  Google Scholar 

  10. Borggaard-, O. K. 1983b. The influence of iron oxides on the surface area of soils. Soil Sci. 32:427–432.

    Google Scholar 

  11. Cambier, P., and R. Prost. 1981. Etude des associations argileoxyde: organisation des constituents d’un materiau ferallitique. Agronomic 1:713–722.

    Article  Google Scholar 

  12. Carlson, L., and U. Schwertmann. 1980. Natural occurrence of feroxyhite (δ’-FeOOH). Clays Clay Miner. 28:272–280.

    Article  CAS  Google Scholar 

  13. Carlson, L., and U. Schwertmann. 1981. Natural ferrihydrites in surface deposits from Finland and their association with silica. Geochim. Cosmochim. Acta 45:421–429.

    Article  CAS  Google Scholar 

  14. Cavallaro, N., and M. B. McBride. 1984. Effect of selective dissolution on charge and surface properties of an acid soil clay. Clays Clay Miner. 32:283–290.

    Article  CAS  Google Scholar 

  15. Cornell, R. M., A. M. Posner, and J. P. Quirk. 1974. Crystal morphology and the dissolution of goethite. J. Inorg. Nucl. Chem. 36:1937–1946.

    Article  CAS  Google Scholar 

  16. Cornell, R. M., A. M. Posner, and J. P. Quirk. 1976. The kinetics and mechanism of the acid dissolution of goethite α-FeOOH. J. Inorg. Nucl. Chem. 38:563–567.

    Article  CAS  Google Scholar 

  17. Cornell, R. M., S. Mann, and A. J. Skarnulis. 1983. A high-resolution electron microscopy examination of domain boundaries in crystals of synthetic goethite. J. Chem. Soc., Faraday Trans. 1, 79:2679–2684.

    Article  CAS  Google Scholar 

  18. Curi, N., and D. P. Franzmeier. 1984. Toposequence of Oxisols from the central plateau of Brazil. Soil Sci. Soc. Am. J. 48:341–346.

    Article  CAS  Google Scholar 

  19. Deshpande, T.L., D. J. Greenland, and J. P. Quirk. 1968. Changes in soil properties associated with the removal of iron and aluminium oxides. J. Soil Sci. 19:108–122.

    Article  CAS  Google Scholar 

  20. Eggleton, R. A. 1987. The application of micro-beam methods to iron minerals in soils, p. 165–201. In Joseph W. Stucki, Bernard A. Goodman, and Udo Schwertmann (eds.) Iron in Soils and Clay Minerals. D. Reidel, Dordrecht. (This Volume)

    Google Scholar 

  21. Fischer, W. R. 1987. Microbiological reactions of iron in soils, p. 715–748. In Joseph W. Stucki, Bernard A. Goodman, and Udo Schwertmann (eds.) Iron in Soils and Clay Minerals. D. Reidel, Dordrecht. (This Volume)

    Google Scholar 

  22. Fischer, W. R., and U. Schwertmann. 1975. The formation of hematite from amorphous iron(III) hydroxide. Clays Clay Miner. 23:33–37.

    Article  CAS  Google Scholar 

  23. Fitzpatrick, R. W., R. M. Taylor, U. Schwertmann, and C. W. Childs. 1985. Occurrence and properties of lepidocrocite in some soils of New Zealand, South Africa and Australia. Aust. J. Soil Res. 23:543–567.

    Article  CAS  Google Scholar 

  24. Fordham, A. W., and K. Norrish. 1979. Electron microprobe and electron microscope studies of soil clay particles, Aust. J. Soil Res. 17:283–306.

    Article  CAS  Google Scholar 

  25. Fordham, A. W., and K. Norrish. 1983. The nature of soil particles, particularly those reacting with arsenate in a series of chemically treated samples. Aust. J. Soil Res. 21:455–477.

    Article  CAS  Google Scholar 

  26. Fordham, A., S. Merry, and K. Norrish. 1984. Occurrence of microcrystalline goethite in an unusual fibrous form. Geoderma 34: 135–148.

    Article  CAS  Google Scholar 

  27. Furnichi, R., N. Sato, and G. Okamoto. 1965. Study on the dissolution property of aged ferric oxides in sulfuric acid solution. Kogyo Kagaku Zasshi 68:1178–1183.

    Google Scholar 

  28. Gallez, A., A. S. R. Juo, and A. J. Herbillon. 1976. Surface and charge characteristics of selected soils in the tropics. Soil Sci. Soc. Am J. 40:601–608.

    Article  CAS  Google Scholar 

  29. Gangas, N. H., A. Simopoulos, A. Kostikas, N. J. Yassoglou, and S. Filippakis. 1973. Mössbauer studies of small particles of iron oxides in soil. Clays Clay Miner. 21:151–160.

    Article  CAS  Google Scholar 

  30. Gerth, J., and G. Brümmer. 1984. Adsorption und Festlegung von Nickel, Zink und Cadmium durch Goethit (α-FeOOH). Fresenius Z. Anal. Chem. 316:616–620.

    Article  Google Scholar 

  31. Goldberg, S., and G. Sposito. 1984. A chemical model of phosphate adsorption by soils. II. Noncalcareous soils. Soil Sci. Soc. Am. J. 48:779–783.

    Article  CAS  Google Scholar 

  32. Golden, D. C. 1978. Physical and chemical properties of aluminum-substituted goethite. Ph.D. Thesis, North Carolina State University.

    Google Scholar 

  33. Golden, D. C., and J. B. Dixon. 1984. Kaolin-iron oxide interactions. Agron. Abst.:272.

    Google Scholar 

  34. Golden, D. C., L. H. Bowen, S. B. Weed, and J. M. Bigham. 1979. Mössbauer studies of synthetic and soil-occurring aluminum-substituted goethites. Soil Sci. Soc. Am. J. 43:802–808.

    Article  CAS  Google Scholar 

  35. Gomez-Villacieros, R., L. Hernan, J. Morales, and J. L. Tirado. 1984. Textural evolution of synthetic γ-FeOOH during thermal treatment by differential scanning calorimetry. J. Colloid Interface Sci. 101:392–400.

    Article  CAS  Google Scholar 

  36. Greenland, D. J., J. M. Oades, and T. M. Sherwin. 1968. Electronmicroscope observations of iron oxides in some red soils. Soil Sci. 19:123–126.

    Article  CAS  Google Scholar 

  37. Henmi, T., N. Wells, C. W. Childs, and R. L. Parfitt. 1980. Poorly-ordered iron rich precipitates from springs and streams on andesitic volcanoes. Geochim. Cosmochim. Acta 44:365–372.

    Article  CAS  Google Scholar 

  38. Hingston, F. J., A. M. Posner, and J. P. Quirk. 1972. Anion adsorption by goethite and gibbsite. 1. The role of the proton in determining adsorption envelopes. Soil Sci. 23:177–192.

    Article  CAS  Google Scholar 

  39. Holmgren, G. G. S. 1967. A rapid citrate-dithionite extractable iron procedure. Soil Sci. Soc. Am. Proc. 31:210–211.

    Article  CAS  Google Scholar 

  40. Hurst, V. J. 1977. Visual estimation of iron in saprolite. Geol. Soc. Am. Bull. 88:174–176.

    Article  CAS  Google Scholar 

  41. Ibanga, I. J., S. W. Buol, S. B. Weed, and L. H. Bowen. 1983. Iron oxides in petroferric materials. Soil Sci. Soc. Am. J. 47:1240–1246.

    Article  CAS  Google Scholar 

  42. Janot, Ch., H. Gibert, and C. Tobias. 1973. Charactérisation de kaolinites ferrifères par spectrométrie Mössbauer. Bull. Soc. Fr. Mineral. Cristallogr. 96:281–291.

    CAS  Google Scholar 

  43. Jónás, K., and K. Solymar. 1980. Some applications of Mössbauer spectroscopy for the quantitative analysis of minerals and mineral mixtures. J. Molecular Structure 60:449–452.

    Article  Google Scholar 

  44. Jones, R. C., W. H. Hudnall, and W. S. Sakai. 1982. Some highly weathered soils of Puerto Rico. 2. Mineralogy. Geoderma 27:75–137.

    Article  CAS  Google Scholar 

  45. Kabai, J. 1973. Determination of specific activation energies of metal oxides and metal oxide hydrates by measurement of the rate of dissolution. Acta Chem. Acad. Sci. Hung. 78:57–73.

    CAS  Google Scholar 

  46. Kämpf, N. 1981. Die Eisenoxidmineralogie einer Klimasequenz von Böden aus Eruptiva in Rio Grande do Sul, Brasilien. Ph.D. Dissertation, Technische Universität München.

    Google Scholar 

  47. Karim, M. J., and W. A. Adams. 1984. Relationships between sesquioxides, kaolinite, and phosphate sorption in a catena of Oxisols in Malawi. Soil Sci. Soc. Am. J. 48:406–409.

    Article  CAS  Google Scholar 

  48. Kemper, W. D. 1966. Aggregate stability of soils from western United States and Canada. USDA Technical Bulletin No. 1355.

    Google Scholar 

  49. Kitagawa, Y. 1983. Goethite and hematite in some soils from the Amazon region. Soil Sci. Plant Nutr. 29:209–217.

    CAS  Google Scholar 

  50. Klug, H. P., and L. E. Alexander. 1974. X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. Second Edition. J. Wiley and Sons, New York.

    Google Scholar 

  51. Kosmas, C. S., N. Curi, R. B. Bryant, and D. P. Franzmeier. 1984. Characterization of iron oxide minerals by second-derivative visible spectroscopy. Soil Sci. Soc. Am. J. 48:401–405.

    Article  CAS  Google Scholar 

  52. Kuron, H., and B. Walter. 1964. Über Bildung und Bindung von Mikroaggregaten in Böden. Z. Pflanzenernähr. Bodenk. 104:12–24.

    Article  CAS  Google Scholar 

  53. Lim-Nunez, R., and R. J. Gilkes. 1985. Acid dissolution of synthetic metal-substituted goethites and hematites. Int. Clay Conf., Denver, 1985, Abstracts: 140.

    Google Scholar 

  54. Lindsay, W. L. 1987. Solubility and redox equilibria of iron compounds in soils p. 37–62. In Joseph W. Stucki, Bernard A. Goodman, and Udo Schwertmann (eds.) Iron in Soils and Clay Minerals. D. Reidel, Dordrecht. (This Volume)

    Google Scholar 

  55. Mackenzie, R. C. (ed.). 1957. The Differential Thermal Investigation of Clays. The Mineralogical Society, London.

    Google Scholar 

  56. Mann, S., R. M. Cornell, and U. Schwertmann. 1985. The influence of aluminium on iron oxides. XII. High-resolution transmission electron microscope (HRTEM) study of aluminous goethites. Clay Miner. 20:255–262.

    Article  CAS  Google Scholar 

  57. McIntyre, D. S. 1956. The effect of free ferric oxide on the structure of some Terra Rossa and Rendzina soils. J. Soil Sci. 7:302–306.

    Article  CAS  Google Scholar 

  58. McNeal, B. L., D. A. Layfield, W. A. Norvell, and J. D. Rhoades. 1968. Factors influencing hydraulic conductivity of soils in the presence of mixed salt solution. Soil Sci. Soc. Am. Proc. 32:187–190.

    Article  CAS  Google Scholar 

  59. Murad, E. 1987. Properties and behavior of iron oxides as determined by Mössbauer spectroscopy, p. 309–350. In Joseph W. Stucki, Bernard A. Goodman, and Udo Schwertmann (eds.) Iron in Soils and Clay Minerals. D. Reidel, Dordrecht. (This Volume)

    Google Scholar 

  60. Murad, E., and U. Schwertmann. 1983. The influence of aluminium substitution and crystallinity on the Mössbauer spectra of goethite. Clay Miner. 18:301–312.

    Article  CAS  Google Scholar 

  61. Murad, E., and U. Schwertmann. 1986. The influence of Al substitution and crystallinity on the room temperature Mössbauer spectrum of hematite. Clays Clay Miner. 34:1–6.

    Article  CAS  Google Scholar 

  62. Nininger, R. C., and D. Schroeer. 1978. Mössbauer studies of the Morin transition in bulk and microcrystalline α-Fe2 O3. J. Phys. Chem. Solids 39:137–144.

    Article  CAS  Google Scholar 

  63. Pean, F., and J. Torrent. 1984. Relationships between phosphate sorption and iron oxides in Alfisols from a river terrace sequence of Mediterranean Spain. Geoderma 33:283–296.

    Article  Google Scholar 

  64. Rengasamy, P., and J. M. Oades. 1977. Interaction of monomeric and polymeric species of metal ions with clay surfaces. II. Changes in surface properties of clays after addition of iron(III). Aust. J. Soil Res. 15:235–242.

    Article  CAS  Google Scholar 

  65. Rice, T. J., S. B. Weed, and S. W. Buol. 1985. Soil-saprolite profiles derived from mafic rocks in the North Carolina Piedmont: II. Association of free iron oxides with soils and clays. Soil Sci. Soc. Am. J. 49:178–186.

    Article  CAS  Google Scholar 

  66. Robert, M., J. Berrier, G. Veneau, and M. A. Vicente. 1982. Action of amorphous compounds on clay particle associations, p. 411–422. In H. van Olphen and F. Veniaie (eds.) Proc. Int. Clay Conf., Bologna, Pavia, 1981. Elsevier, Amsterdam.

    Google Scholar 

  67. Saleh, A. M., and A. A. Jones. 1984. The crystallinity and surface characteristics of synthetic ferrihydrite and its relationship to kaolinite surfaces. Clay Miner. 19:745–755.

    Article  CAS  Google Scholar 

  68. Schahabi, S., and U. Schwertmann. 1970. Der Einfluss von synthetischen Eisenoxiden auf die Aggregation zweier Lössbödenhorizonte. Z. Pflanzenernähr. Bodenk. 125:193–204.

    Article  CAS  Google Scholar 

  69. Schellmann, W. 1978. Behaviour of nickel, cobalt and chromium in ferruginous lateritic nickel ores. Bull. B.R.G.M. (2), II, 3:275–282.

    Google Scholar 

  70. Schulze, D. G. 1984. The influence of aluminum on iron oxides. VIII. Unit cell dimensions of Al substituted goethites and estimation of Al from them. Clays Clay Miner. 32:36–44.

    Article  CAS  Google Scholar 

  71. Schulze, D. G., and U. Schwertmann. 1984. The influence of aluminium on iron oxides. X. The properties of Al-substituted goethites. Clay Miner. 19:521–539.

    Article  CAS  Google Scholar 

  72. Schwertmann, U. 1984a. Aluminiumsubstitution in pedogenen Eisenoxiden - eine Übersicht. Z. Pflanzenernähr. Bodenk. 147:385–399.

    Article  CAS  Google Scholar 

  73. Schwertmann, U. 1984b. The influence of aluminium on iron oxides. IX. Dissolution of Al-goethites in 6 M HCl. Clay Miner. 19:9–19.

    Article  CAS  Google Scholar 

  74. Schwertmann, U. 1984c. The double dehydroxylation peak of goethite. Thermochim. Acta 78:39–46.

    Article  CAS  Google Scholar 

  75. Schwertmann, U., and H. Fechter. 1984. The influence of aluminum on iron oxides. XI. Aluminum-substituted maghemite in soils and its formation. Soil Sci. Soc. Am. J. 48:1462–1463.

    Article  CAS  Google Scholar 

  76. Schwertmann, U., and W. R. Fischer. 1973. Natural “amorphous” ferric hydroxide. Geoderma 10:237–247.

    Article  CAS  Google Scholar 

  77. Schwertmann, U., and N. Kämpf. 1983. Oxidos de ferro jovens em ambientes pedogenéticos brasileiros. R. Bras. Ci. Solo 7:251–255.

    CAS  Google Scholar 

  78. Schwertmann, U., and M. Latham. 1986. Properties of iron oxides in some New Caledonian Oxidsols. Geoderma 39:105–123.

    Article  CAS  Google Scholar 

  79. Schwertmann, U., and N. Kämpf. 1985. Properties of goethite and hematite in kaolinitic soils of southern and central Brazil. Soil Sci. 139:344–350.

    Article  CAS  Google Scholar 

  80. Schwertmann, U., and E. Murad. 1983. The effect of pH on the formation of goethite and hematite from ferrihydrite. Clays Clay Miner. 31:277–284.

    Article  CAS  Google Scholar 

  81. Schwertmann, U., and R. M. Taylor. 1979. Natural and synthetic poorly crystallized lepidocrocite. Clay Miner. 14:285–293.

    Article  CAS  Google Scholar 

  82. Schwertmann, U., and R. M. Taylor. 1987. Iron oxides. In J. B. Dixon and S. B. Weed (eds.) Minerals in Soil Environments. Second Edition. Soil Science Society of America, Madison. (In Preparation.)

    Google Scholar 

  83. Schwertmann, U., P. Cambier, and E. Murad. 1985. Properties of goethites of varying crystallinity. Clays Clay Miner. 33:369–378.

    Article  CAS  Google Scholar 

  84. Schwertmann, U., L. Carlson, and E. Murad. 1987. Properties of iron oxides in two Finnish lakes in relation to the environment of their formation. Clays Clay Miner. 35: (In Press).

    Google Scholar 

  85. Schwertmann, U., H. Kodama, and W. R. Fischer. 1986. Mutual interactions between organics and iron oxides, p. 223–250. In P.M. Huang (ed.) Interactions of Soil Minerals with Natural Organics and Microbes. Soil Science Society of America, Madison.

    Google Scholar 

  86. Schwertmann, U., R. W. Fitzpatrick, R. M. Taylor, and D. G. Lewis. 1979. The influence of aluminum on iron oxides. Part II. Preparation and properties of Al-substituted hematites. Clays Clay Miner. 27: 105–112.

    Article  CAS  Google Scholar 

  87. Sidhu, P. S., R. J. Gilkes, R. M. Cornell, A. M. Posner, and J. P. Quirk. 1981. Dissolution of iron oxides and oxyhydroxides in hydrochloric and perchloric acids. Clays Clay Miner. 29: 269–276.

    Article  CAS  Google Scholar 

  88. Smith, K. L., and R. A. Eggleton. 1983. Botryoidal goethite: a transmission electron microscope study. Clay Clay Miner. 5:392–396.

    Article  Google Scholar 

  89. Smykatz-Kloss, W. 1974. Differential thermal analysis. Springer Verlag, Berlin.

    Google Scholar 

  90. Steinwehr, H. E. v. 1967. Gitterkonstanten im System α-(Al, Fe, Cr)2 O3 und ihr Abweichen von der Vegardregel. Z. Kristallogr. 125:377–403.

    Article  Google Scholar 

  91. Stiers, W., and U. Schwertmann. 1985. Evidence for manganese substitution in synthetic goethite. Geochim. Cosmochim. Acta 49: 1905–1911.

    Article  Google Scholar 

  92. Süsser, P., and U. Schwertmann. 1983. Iron oxide mineralogy of ochreous deposits in drain pipes and ditches. Z. Kulturtechnik Flurbereinigung 24:386–395.

    Google Scholar 

  93. Torrent, J., U. Schwertmann, and D. G. Schulze. 1980. Iron oxide mineralogy of some soils of two river terrace sequences in Spain. Geoderma 23:191–208.

    Article  CAS  Google Scholar 

  94. Torrent, J., U. Schwertmann, H. Fechter, and F. Alferez. 1983. Quantitative relationships between soil color and hematite content. Soil Sci. 136:354–358.

    Article  CAS  Google Scholar 

  95. Towe, K. M., and W. F. Bradley. 1967. Mineralogical constitution of colloidal “hydrous ferric oxides”. J. Colloid Interface Sci. 24:284–392.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Schwertmann, U. (1988). Some Properties of Soil and Synthetic Iron Oxides. In: Stucki, J.W., Goodman, B.A., Schwertmann, U. (eds) Iron in Soils and Clay Minerals. NATO ASI Series, vol 217. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4007-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4007-9_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8278-5

  • Online ISBN: 978-94-009-4007-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics