Skip to main content

The Application of Micro-Beam Methods to Iron Minerals in Soils

  • Chapter
Iron in Soils and Clay Minerals

Part of the book series: NATO ASI Series ((ASIC,volume 217))

Abstract

The term “micro-diffraction” may be used to describe diffraction in which the incident beam is very narrow, or it may refer to diffraction from very tiny crystals. Iron-bearing minerals in soils are generally very fine-grained, commonly less than one micrometer — a size considerably smaller than the collimated beam of most available X-ray cameras. Hence, as it applies to X-ray diffraction, “micro” in this Chapter will refer to the crystal size. Most routine X-ray diffraction work is done on large crystals (1–5 μm diameter and thus more than 1000 unit cells across). Most of the theory and practice, Bragg’s law and the Laue equations for example, assume many coherently diffracting unit cells and simplify the results accordingly. The simplified theory is inadequate when the crystal size is reduced below about 100 unit ceils, and serious error in the measurement of d-spacing using Bragg’s law may be introduced below 20 unit cells. Many Fe minerals in soils are this small, and the full diffraction theory is needed to avoid errors in interpretation of X-ray diffraction results by routine methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Banfield, J. F. 1985. Mineralogy and chemistry of granite weathering. M.Sc. Thesis, Australian National University.

    Google Scholar 

  2. Beeston, B. E. P., R. W. Horne, and R. Markham. 1972. Electron diffraction and optical diffraction techniques, p. 183–440. In A. M. Glauert (ed.) Practical Methods in Electron Microscopy, Vol, 1. Elsevier, Amsterdam.

    Google Scholar 

  3. Berner, R. A., E. L. Sjoberg, M. A. Velbel, and M. D. Krom. 1980. Dissolution of pyroxenes and amphiboles during weathering. Science 207:1205–1206.

    Article  CAS  Google Scholar 

  4. Besson, G., C. de la Calle, M. Rautureau, C. Tchoubar, S. I. Tsipurski, and V. A. Dritz. 1981. X-ray and electron diffraction study of the structure of the Garfield nontronite. p. 29–40. In H. van Olphen and F. Veniale (eds.) Proc. Int. Clay Conf., Bologna, Pavia, 1981. Elsevier, Amsterdam.

    Google Scholar 

  5. Brigatti, M. F. 1981. Hisingerite: A review of its crystal chemistry, p. 97–110. In H. van Olphen and F. Veniale (eds.) Proc. Int. Clay Conf., Bologna, Pavia, 1981. Elsevier, Amsterdam.

    Google Scholar 

  6. Brindley, G. W., and G. Brown (eds.). 1980. Crystal Structures of Clay Minerals and Their X-ray Identification. Mineralogical Society, London.

    Google Scholar 

  7. Carlson, L., and U. Schwertmann. 1981. Natural ferrihydrites in surface deposits from Finland and their association with silica. Geochim. Cosmochim. Acta. 45:421–429

    Article  CAS  Google Scholar 

  8. Chandler, C. A. 1977. X-ray microanalysis in the electron microscope, p. 319–538. In A. M. Glauert (ed.) Practical Methods in Electron Microscopy, Vol. 5. Elsevier, Amsterdam.

    Google Scholar 

  9. Deivigne, J., E. B. A. Bisdom, J. Sleeman, and G. Stoops. 1979. Olivines, their pseudomorphs and secondary products. Pedologie 29: 247–300.

    Google Scholar 

  10. Edington, J. W. 1976. Practical Electron Microscopy in Materials Science. Van Nostrand Reinhold Co., New York.

    Google Scholar 

  11. Eggleton, R. A. 1975. Nontronite topotaxial after hedenbergite. Am Mineral. 60:1063–1068.

    CAS  Google Scholar 

  12. Eggleton, R. A. 1984. Formation of iddingsite rims on olivine: a transmission electron microscope study. Clays Clay Miner. 32:1–11.

    Article  CAS  Google Scholar 

  13. Eggleton, R. A., J. H. Pennington, R. S. Freeman, and I. M. Threadgold. 1983. Structural aspects of the hisingerite neotocite series. Clay Miner. 18:21–31.

    Article  CAS  Google Scholar 

  14. Fey, M. V., and J. B. Dixon. 1981. Synthesis and properties of poorly crystalline hydrated aluminous goethitesClays Clay Miner. 29:91–100.

    Article  CAS  Google Scholar 

  15. Fitzpatrick, R. W., R. M. Taylor, U. Schwertmann, and C. W. Childs. 1985. Occurrence and properties of lepidocrite in some soils of New Zealand, South Africa and Australia. Aust. J. Soil Res. 23: 543–567.

    Article  CAS  Google Scholar 

  16. Guinier, A. 1963. X-ray Diffraction in Crystals. Imperfect Crystals, and Amorphous Bodies. Freeman, San Francisco.

    Google Scholar 

  17. Hirsch, P. B., A. Howie, R. B. Nicholson, D. W. Pashley, and M. J. Whelan. 1965. Electron Microscopy of Thin Crystals. Butterworth, London.

    Google Scholar 

  18. James, R. W. 1948. Optical Principles of X-ray Diffraction. Bell, London.

    Google Scholar 

  19. Jónás, K., and K. Solymar. 1970. Preparation, X-ray, derivatographic and infra-red study of aluminium-substituted goethites. Acta Chim. Acad. Sci. Hung. 66:383–394.

    Google Scholar 

  20. Kämpf, N., and U. Schwertmann. 1982. The 5-M-NaoH concentration treatment for iron oxides in soils. Clays Clay Miner. 30:401–408.

    Article  Google Scholar 

  21. Kämpf, N., and U. Schwertmann. 1982. Quantitative determination of goethite and hematite in kaolinitic soils by X-ray diffraction. Clay Miner. 17:359–364.

    Article  Google Scholar 

  22. Klug, H. P., and L. E. Alexander. 1974 X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. J. Wiley and Sons, New York.

    Google Scholar 

  23. Lorimer, G. W., and G. Cliff. 1976. Analytical electron microscopy of minerals. In H. R. Wenk (ed.) Electron Microscopy in Mineralogy. Springer Verlag, Berlin.

    Google Scholar 

  24. Meunier, A., and B. Velde. 1982. X-ray diffraction of oriented clays in small quantities. Clay Miner. 17:259–262.

    Article  Google Scholar 

  25. Nemecz, E. 1981. Clay Minerals. Academiai Kiado, Budapest.

    Google Scholar 

  26. Russell, J. D., and D. R. Clark. 1978. The effect of Fe-for-Si substitution on the b-dimension of nontronite. Clay Miner. 13:133–138.

    Article  CAS  Google Scholar 

  27. Schulze, D. G. 1981. Identification of soil iron oxide minerals by differential X-ray diffraction. Soil Sci. Soc. Am. J. 45:437–440.

    Article  CAS  Google Scholar 

  28. Schulze, D. G. 1982. The identification of iron oxides by differential X-ray diffraction and the influence of aluminum substitution on the structure of goethite. Ph.D. Dissertation, Technische Universität München.

    Google Scholar 

  29. Schulze, D. G. 1984. The influence of aluminum on iron oxides. VIII. Unit-cell dimensions of Al-substituted goethites and estimation of Al from them. Clays Clay Miner. 32:36–44.

    Article  CAS  Google Scholar 

  30. Schwertmann, U. 1984. The influence of aluminium on iron oxides: IX. Dissolution of Al-goethites in 6 M HCl. Clay Miner. 19:9–19.

    Article  CAS  Google Scholar 

  31. Schwertmann, U., and W. R. Fischer. 1973. Natural “amorphous” ferric hydroxide. Geoderma 10:237–247.

    Article  CAS  Google Scholar 

  32. Schwertmann, U., and E. Murad. 1983. Effect of pH on the formation of goethite and hematite from ferrihydrite. Clays Clay Miner. 4:277–284.

    Article  Google Scholar 

  33. Schwertmann, U., and R. M. Taylor. 1979. Natural and synthetic poorly crystallized lepidocrocite. Clay Miner. 14:285–294.

    Article  CAS  Google Scholar 

  34. Shayan, A. 1984. Hisingerite material from a basalt quarry near Geeiong, Victoria, Australia. Clays Clay Miner. 32:272–278.

    Article  CAS  Google Scholar 

  35. Smith, K. L., and R. A. Eggleton. 1983. Botryoidal goethite: A transmission electron microscope study. Clays Clay Miner. 31:392–396.

    Article  CAS  Google Scholar 

  36. Taylor, R. M. 1984. Influence of chloride on the formation of iron oxides from Fe(II) chloride. II. Effect of [CI] on the formation of lepidocrocite and its crystailinity. Clays Clay Miner. 32:175–180.

    Article  CAS  Google Scholar 

  37. Thiel, R. 1963. Zum system -FeOOH-AlOOH. Z. Anorg. Allg. Chem. 326:70–78.

    Article  CAS  Google Scholar 

  38. Wenk, H-R. (ed.). 1976. Electron Microscopy in Mineralogy. Springer-Verlag, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Eggleton, R.A. (1988). The Application of Micro-Beam Methods to Iron Minerals in Soils. In: Stucki, J.W., Goodman, B.A., Schwertmann, U. (eds) Iron in Soils and Clay Minerals. NATO ASI Series, vol 217. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4007-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4007-9_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8278-5

  • Online ISBN: 978-94-009-4007-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics