Skip to main content

Introduction to Crystal Structures of Iron-Containing Minerals

  • Chapter
Iron in Soils and Clay Minerals

Part of the book series: NATO ASI Series ((ASIC,volume 217))

Abstract

The primary source of Fe for soils and clays is the Fe brought to the earth’s surface in the minerals of igneous rocks. The Fe content of common igneous rocks ranges from about 12% mass (oxide basis) in basalts down to about 1–2% in granites and felsic volcanics. Detrital sedimentary rocks are themselves the products of weathering, and are generally much lower in Fe content than igneous rocks, containing between about 3% and 6% Fe oxide. Only the chemically sedimented Fe deposits, such as the vast Precambrian Fe ores, or the younger chamositic Fe ores contain significant Fe (up to 50% Fe2O3), and in these deposits the Fe is hosted by oxides or clay minerals. Metamorpnic rocks show the same range in Fe content as their igneous or sedimentary precursors.

Sections 7–1 and 7–2 were written by Richard A. Eggleton; 7–3, by Joseph W. Stucki; and 7–4, by Darrell G. Schulze.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Bailey, S. W. 1980a. Summary of recommendations of AIPEA Nomenclature Committee. Clays Clay Miner. 28:73–78.

    Article  CAS  Google Scholar 

  2. Bailey, S. W. 1980b. Structures of layer silicates, p. 1–123. In G. W. Brindley and G. Brown (eds.) Crystal Structures of Clay Minerals and their X-ray Identification. Monograph No. 5. The Mineralogical Society, London.

    Google Scholar 

  3. Bailey, S. W. 1986. Report of AIPEA Nomenclature Committee. Supplement to AIPEA Newsletter No. 22, February, 1986.

    Google Scholar 

  4. Banfield, J. F. 1985. Mineralogy and chemistry of granite weathering. M.Sc. Thesis, Australian National University.

    Google Scholar 

  5. Besson, G., C. de la Calle, M. Rautureau, C. Tchoubar, S. I. Tsipurski, and V. A. Dritz. 1982. X-ray and electron diffraction study of the structure of Garfield nontronite. p. 29–40. In H. van Olphen, and F. Veniale (eds.) Proc. Int. Clay Conf., Bologna and Pavia, 1981. Elsevier, Amsterdam.

    Google Scholar 

  6. Blake, R. L., R. E. Hessevick, T. Zoltai, and L. W. Finger. 1966. Refinement of the hematite structure. Am. Mineral. 51:123–129.

    CAS  Google Scholar 

  7. Bragg, W. H., and W. L. Bragg. 1918. X-rays and Crystal Structure. Third Edition. G. Bell and Sons, London.

    Google Scholar 

  8. Brindley, G. W., and G. Brown. 1980. Crystal Structures of Clay Minerals and their X-ray Identification. Monograph No. 5. The Mineralogical Society, London.

    Google Scholar 

  9. Brindley, G. W., and D. M. C. MacEwan. 1953. Structural aspects of the mienralogy of clays and related silicates, p. 15–59. In Ceramics: A Symposium. The British Ceramic Society, London.

    Google Scholar 

  10. Burns, R. G., and V. M. Burns. 1977. Mineralogy, p. 186–248. In G. P. Glasby (ed.) Marine Manganese Deposits. Elsevier, New York.

    Google Scholar 

  11. Burns, R. G., and V. M. Burns. 1981. Authigenic oxides, p. 875–914. In C. Emiliani (ed.) The Sea, Vol 7. The Oceanic Lithosphere. John Wiley & Sons, New York.

    Google Scholar 

  12. Busing, W. R., and H. A. Levy. 1958. A single crystal neutron diffraction study of diaspore, AIO(OH). Acta Cryst. 11:798–803.

    Article  CAS  Google Scholar 

  13. Carlson, L., and U. Schwertmann. 1980. Natural occurrence of feroxyhite (δ’-FeOOH). Clays Clay Miner. 28:272–280.

    Article  CAS  Google Scholar 

  14. Christensen, H., and A. N. Christensen. 1978. Hydrogen bonds of γ-FeOOH. Acta Chem. Scand. A32:87–88.

    Article  CAS  Google Scholar 

  15. Chukhrov, F. V., B. B. Zvyagin, L. P. Ermilova, and A. I. Gorshkov. 1973. New data on iron oxides in the weathering zone. p. 333–341. In J. M. Serratosa (ed.) Proc. Int. Clay Conf., Madrid, 1972. Division de Ciencias C.S.I.C., Madrid.

    Google Scholar 

  16. Coey, J. M. D. 1987. Magnetic properties of iron in soil oxides and clay minerals, p. 397–466. In Joseph W. Stucki, Bernard A. Goodman, and Udo Schwertmann (eds.) Iron in Soils and Clay Minerals. D. Reidel, Dordrecht. (This Volume)

    Google Scholar 

  17. Deer, W. A., R. A. Howie, and J. Zussman. 1962. Rock Forming Minerals, Vols. 1–2. John Wiley & Sons, New York.

    Google Scholar 

  18. Delvigne, J. 1983. Micromorphology of the alteration and weathering of pyroxenes in the Koua Bocca ultramafic intrusion, Ivory-Coast, western Africa. Sci. Geol., Strasbourg No. 72:57–68.

    Google Scholar 

  19. Delvigne, J., E. B. A. Bisdom, J. Sleeman, and G. Stoops. 1979. Olivines, their pseudomorphs and secondary products. Pedologie 19:247–309.

    Google Scholar 

  20. Eggleton, R. A. 1975. Nontronite topotaxial after hedenbergite. Am. Mineral. 60:1063–1068.

    CAS  Google Scholar 

  21. Eggleton, R. A., and J. N. Boland. 1982. Weathering of enstatite to talc through a sequence of transitional phases. Clays Clay Miner. 30:11–20.

    Article  CAS  Google Scholar 

  22. Eggleton, R. A. 1984. Formation of iddingsite rims on olivine: a transmission electron microscope study. Clays Clay Miner. 32:1–11.

    Article  CAS  Google Scholar 

  23. Ewing, F. J. 1935a. The crystal structure of lepidocrocite. J. Chem. Phys. 3:420–424.

    Article  CAS  Google Scholar 

  24. Ewing, F. J. 1935b. The crystal structure of diaspore. J. Chem. Phys. 3:203–207.

    Article  CAS  Google Scholar 

  25. Fasiska, E. J. 1967. Structural aspects of the oxides and oxyhydrates of iron. Corrosion Sci. 7:833–839.

    Article  CAS  Google Scholar 

  26. Forsyth, J. B., I. G. Hedley, and C. E. Johnson. 1968. The magnetic structure and hyperfine field of goethite (α-FeOOH). J. Phys. C (Proc. Phys. Soc.) 1:179–188.

    Google Scholar 

  27. Gay, P., and R. W. Le Maitre. 1961. Some observations on iddingsite. Am. Mineral. 46:92–111.

    CAS  Google Scholar 

  28. Goodenough, J. B., and A. L. Loeb. 1955. Theory of ionic ordering, crystal distortion, and magnetic exchange due to covalent forces in spinels. Phys. Rev. 98:391–408.

    Article  CAS  Google Scholar 

  29. Grim, R. E. 1968. Clay Mineralogy. McGraw Hill, New York.

    Google Scholar 

  30. Hoppe, W. 1941. Über die Kristallstruktur von α-AlOOH (Diaspor) und α-FeOOH (Nadeleisenerz). Z. Krist. 103:73–89.

    Google Scholar 

  31. Hoppe, W. 1942. Über die Kristallstruktur von α-AlOOH (Diaspor) II. (Fourieranalyse). Z. Kristallogr. 104:11–17.

    CAS  Google Scholar 

  32. Ildefonse, P. 1983. Alterations premeteorique et meteorique des olivines du basalte de Belbex (Cantal, France). Sci. Geol. Mem., Strasbourg 72: 69–79.

    Google Scholar 

  33. Leake, B. E. 1978. Nomenclature of amphiboles. Am. Mineral. 63:1023–1042.

    CAS  Google Scholar 

  34. Lindsley, D. H. 1976. The crystal chemistry and structure of oxide minerals as exemplified by the Fe-Ti oxides, p. L1-L60. In D. Rumble, III (ed.) Short Course Notes, Vol 3. Oxide Minerals. Mineralogical Society of America, Washington, D.C.

    Google Scholar 

  35. Mering, J., and A. Oberlin. 1967. Electron-optical study of smectites. p. 3–25. In S. W. Bailey (ed.) Clays and Clay Minerals, Proc. 15th Natl. Conf., Pittsburgh, Pennsylvania, 1966. Pergamon Press, New York.

    Google Scholar 

  36. Murray, J. W. 1979. Iron oxides, p. 47–98. In R. G. Burns (ed.) Short Course Notes, Vol.6, Marine Minerals. Mineralogical Society of America, Washington, D.C.

    Google Scholar 

  37. Oleś, A., A. Szytula, and A. Wanic. 1970. Neutron diffraction study of γ-FeOOH. Phys. Stat. Sol. 41:173–177.

    Article  Google Scholar 

  38. Parisot, J. C., J. Delvigne, and M. C. T. Groke. 1983. Petrographical aspects of the supergene weathering of garnet in the Serra dos Carajas (Pará, Brazil). Sciences Geologique, Strasbourg No. 72:141–148.

    Google Scholar 

  39. Pauling, L., and S. B. Hendricks. 1925. The crystal structures of hematite and corundum. J. Am. Chem. Soc. 47:781–790.

    Article  CAS  Google Scholar 

  40. Prewitt, C. T. (ed.). 1980. Pyroxenes. Reviews in Mineralogy, Vol. 7. Mineralogical Society of America, Washington, D.C.

    Google Scholar 

  41. Ribbe, P. H. 1982. Orthosilicates. Reviews in Mineralogy, Vol. 5. Mineralogical Society of American, Washington, D.C.

    Google Scholar 

  42. Russell, J. D. 1979. Infrared spectroscopy of ferrihydrite: evidence for the presence of structural hydroxyl groups. Clay Miner. 14:109–114.

    Article  CAS  Google Scholar 

  43. Shannon, R. D. 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta. Cryst. A32:751–767.

    CAS  Google Scholar 

  44. Szytula, A., A. Burewicz, Z. Dimitrijević, S. Kraśnicki, H. Rzany, J. Todorović, A. Wanic, and W. Wolski. 1968. Neutron diffraction studies of α-FeOOH. Phys. Stat. Sol. 26:429–434.

    Article  CAS  Google Scholar 

  45. Thompson, J. B., Jr. 1978. Biopyriboles and polysomatic series. Am. Mineral. 63:239–249.

    CAS  Google Scholar 

  46. Towe, K. M., and W. F. Bradley. 1967. Mineralogical constitution of colloidal “hydrous ferric oxides”. J. Colloid Interface Sci. 24:384–392.

    Article  CAS  Google Scholar 

  47. Veblen, D. R. (ed.). 1981. Amphiboles. Reviews in Mineralogy, Vol. 9A. Mineralogical Society of America, Washington, D.C.

    Google Scholar 

  48. Velbel, M. A. 1984. Natural weathering mechanisms of almandine garnet. Geology 12:631–634.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Eggleton, R.A., Schulze, D.G., Stucki, J.W. (1988). Introduction to Crystal Structures of Iron-Containing Minerals. In: Stucki, J.W., Goodman, B.A., Schwertmann, U. (eds) Iron in Soils and Clay Minerals. NATO ASI Series, vol 217. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4007-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4007-9_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8278-5

  • Online ISBN: 978-94-009-4007-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics